Refine Your Search

Topic

Search Results

Technical Paper

Implementation of the DADI Method into the Droplet Equation for Efficient Aircraft Icing Simulation

2023-06-15
2023-01-1465
Diagonalized alternating-direction implicit (DADI) method is implemented in the Eulerian hyperbolic droplet solver, ICEPAC, for efficient high-order accurate analysis of aircraft icing. Detailed techniques for implementing the DADI method considering hyperbolicity characteristics are discussed. For the Eulerian droplet equation system to be strictly hyperbolic, additional source terms regarding artificial droplet pressure are included. Validations of the present implicit solver are conducted using two- and three-dimensional steady benchmark tests: NACA0012 airfoil, NACA23012 airfoil, and a swept wing. Also, the oscillating airfoil SC2110 case was analyzed to verify the robustness and efficiency of the proposed solver. In addition, the computational cost of the current implicit solver is considerably lower than that of the explicit multi-stage solver.
Technical Paper

Stability Monitoring Algorithm with a Combined Slip Tire Model for Maximized Cornering Speed of High-Speed Autonomous Driving

2023-04-11
2023-01-0684
This paper presents a stability monitoring algorithm with a combined slip tire model for maximized cornering speed of high-speed autonomous driving. It is crucial to utilize the maximum tire force with maintaining a grip driving condition in cornering situations. The model-free cruise controller has been designed to track the desired acceleration. The lateral motion has been regulated by the sliding mode controller formulated with the center of percussion. The controllers are suitable for minimizing the behavior errors. However, the high-level algorithm is necessary to check whether the intended motion is inside of the limit boundaries. In extreme diving conditions, the maximum tire force is limited by physical constraints. A combined slip tire model has been applied to monitor vehicle stability. In previous studies, vehicle stability was evaluated only by vehicle acceleration.
Technical Paper

Data-driven Trajectory Planning of Lane Change Maneuver for Autonomous Driving

2023-04-11
2023-01-0687
This paper presents a methodology of trajectory planning for the surrounding-aware lane change maneuver of autonomous vehicles based on a data-driven method. The lateral motion is planned by sampling candidate patterns which are defined based on quintic polynomial functions over time. Based on the cost evaluation among the sampled candidates, the optimal lateral motion pattern is selected as a reference and tracked by the controller. The longitudinal motion is planned and controlled using Model Predictive Control (MPC) which is an optimal control method designed considering the surrounding traffic information. To realize the lane change motion similar to the human driving behavior in the surrounding traffic situation, the human driving pattern is modeled in the form of motion parameters and considered in planning the lateral and longitudinal motion.
Technical Paper

Hierarchical Motion Planning and Control Algorithm of Autonomous Racing Vehicles for Overtaking Maneuvers

2023-04-11
2023-01-0698
This paper describes a hierarchical motion planning and control framework for overtaking maneuvers under racing circumstances. Unlike urban or highway autonomous driving conditions, race track driving requires longer prediction and planning horizons in order to respond to upcoming corners at high speed. In addition, the subject vehicle should determine the optimal action among possible driving modes when opponent vehicles are present. In order to meet these requirements and secure real time performance, a hierarchical architecture for decision making, motion planning, and control for an autonomous racing vehicle is proposed. The supervisor determines whether the subject vehicle should stay behind the preceding vehicle or overtake, and its direction when overtaking. Next, a high level trajectory planner generates the desired path and velocity profile in a receding horizon fashion.
Technical Paper

Development of Fault Detection and Emergency Control for Application to Autonomous Vehicle

2021-04-06
2021-01-0075
This paper describes a failsafe system of automated driving vehicles. The failsafe system consists of the following two parts: sliding mode observer-based environment sensor, chassis sensor fault detection, and emergency deceleration control. Two sliding mode observers are designed to reconstruct the fault of acceleration and environment sensor(Lidar) in a longitudinal direction. In the environment sensor's fault detection part, the longitudinal vehicle model receives clearance and relative velocity values. Therefore, failure diagnosis is possible regardless of environmental sensors, such as radar, lidar, and camera. This paper's sensor data is the failure of Delphi's Electronically Scanning Radar (ESR) and Ibeo's LUX Lidar installed in an autonomous vehicle. The emergency deceleration control algorithm employs the sliding mode control with adaptive convergence time. In the event of a failure, it is significant to control the vehicle within a short period safely.
Technical Paper

Model Predictive Control-Based Lateral Control of Autonomous Large-Size Bus on Road with Large Curvature

2021-04-06
2021-01-0099
This paper describes a lateral control of autonomous large size buses on road with large curvature. In the case of long and wide commercial vehicle such as large bus, applying centerline tracking controllers in constrained environments such as large curved road (e.g. turning at intersection) may cause some concerns. Two concerns are considered: inner lane crossing related to collisions with curb and opposite lane crossing related to threatening surrounding vehicles. Considering relations between width and curvature of the road and length and width of the large size bus, the curvature of road at which inner or outer lane crossing begin to occur was calculated when centerline tracking controller was applied. Thus, the proposed algorithm optimizes motion of the bus by using model predictive control (MPC) using road geometry as constraints.
Technical Paper

Rear-Wheel Steering Control for Enhanced Maneuverability of Vehicles

2019-04-02
2019-01-1238
This paper proposes a rear-wheel steering control method that can modify and improve the vehicle lateral response without tire model and parameter. The proposed control algorithm is a combination of steady-state and transient control. The steady state control input is designed to modify steady-state yaw rate response of the vehicle, i.e. understeer gradient of the vehicle. The transient control input is a feedback control to improve the transient response when the vehicle lateral behavior builds up. The control algorithm has been investigated via computer simulations. Compared to classical control methods, the proposed algorithm shows good vehicle lateral response such as small overshoot and fast response. Specifically, the proposed algorithm can alleviate stair-shaped response of the lateral acceleration.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Technical Paper

Model Predictive Control based Automated Driving Lane Change Control Algorithm for Merge Situation on Highway Intersection

2017-03-28
2017-01-1441
This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
Technical Paper

A Novel Electric-Power-Steering (EPS) Control Algorithm Development for the Reference Steering Feel Tracking

2016-04-05
2016-01-1546
This paper describes a reference steering feel tracking algorithm for Electric-Power-Steering (EPS) system. Development of the EPS system with intended steering feel has been time-consuming procedure, because the feedforward map-based method has been applied to the conventional EPS system. However, in this study, a three-dimensional reference steering feel surface, which is determined from current vehicle states, is proposed. In order to track the proposed reference steering feel surface, sliding mode approach is applied to second-order steering dynamics model considering a coulomb friction model. An adaptive technique is utilized for robustness against uncertainties. In order to validate the proposed EPS control algorithm, hardware-in-the-loop simulation (HILS) has been conducted with respect to a typical steering test. It is shown that the reference steering feel is realized well by the proposed EPS control algorithm.
Journal Article

Lateral Control for Automated Vehicle Following System in Urban Environments

2014-04-01
2014-01-0161
In contrast to highway, there are some sections not well maintained in urban roads. In these sections, there may be faint lane marks or static obstacles due to construction or some other reasons. Therefore, an automated vehicle following system such as traffic jam assistant should consider these sections to guarantee the safety of the system. In order to achieve this purpose, a model predictive control (MPC) scheme has been developed. The objectives of MPC are to compute the sequence of optimal steering input for vehicle following with obstacle avoidance. For this, the MPC uses the lead vehicle's state and obstacle's position obtained by lidars. For this purpose, a simplified nonlinear model of the vehicle was used to predict the future evolution of the system. Based on this prediction, performance index is optimized under operating constraints at each time step. A test vehicle equipped with two lidars on left and right corner of the front bumper has been developed.
Journal Article

Aerodynamic Drag Reduction of Ahmed Model Using Synthetic Jet Array

2013-03-25
2013-01-0095
As speed of ground vehicle increases, there are increased concerns on the aerodynamic drag reduction of ground vehicle. Recently, synthetic jet is emerging as a promising active flow control technology for aerodynamic drag reduction. In this paper, we performed an experimental parametric study on synthetic jet for aerodynamic drag reduction of Ahmed model. Synthetic jet array is constructed by twelve synthetic jet actuators, and installed on two kinds of Ahmed models, of which slant angles are 25° and 35°. The jets are emanated between the roof and the rear slant surface. Jet angle, momentum coefficient, and driving frequency are changed to assess the effect of synthetic jet array on aerodynamic drag. To quantify the effect of synthetic jet, the aerodynamic drag and rear surface pressure are measured and analyzed. From the result, the effect of synthetic jet actuation on aerodynamic drag differs according to the slant angle of the body.
Technical Paper

A Study of an Active Rear Diffuser Device for Aerodynamic Drag Reduction of Automobiles

2012-04-16
2012-01-0173
The goal of this study is to develop an actively translating rear diffuser device to reduce the aerodynamic drag experienced by passenger cars. The feature of this device is hidden under the rear bumper ordinarily not to ruin the external design of the car and slips out backward under the high-speed driving condition. By this study, a movable arc-shaped semi-diffuser device is designed to maintain the streamlined automobile rear underbody configuration. It's installed under the rear bumper of a passenger car. Seven types of rear diffuser devices whose positions, slid out lengths and widths are differing with the basic shape installed in the rear bumper section of a passenger car and performed Computational Fluid Dynamics (CFD) analyses under rotating wheel and moving ground conditions. The main purpose of this study is that explains the aerodynamic drag reduction mechanism of a passenger car via an actively translating rear diffuser device at a high speed driving condition.
Journal Article

Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension

2009-04-20
2009-01-0437
This paper describes a driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consists of four parts; speed controller for tracking of the desired speeds, yaw rate controller which computes a yaw moment input to track desired yaw rates, longitudinal tire force distribution which determines an optimal desired longitudinal tire force and wheel torque controller which determines a wheel torque command at each wheel to keep slip ratio at each wheel below a limit value as well as track the desired tire force. Longitudinal and vertical tire force estimators are designed for optimal tire force distribution and wheel slip control. The dynamic model of RVAS for simulation study is validated using vehicle test data.
Technical Paper

Application of Functional Design Method to Road Vehicle Aerodynamic Optimization in Initial Design Stage

2009-04-20
2009-01-1166
Exterior shape of automobile can be represented by shape function through this study so that aerodynamic shape parameters can be easily controlled and changed. Also ordinary geometric information can be extracted easily from shape function model by simple calculations. It is possible to predict the aerodynamic performance of functional virtual car models which are transformed continually by developing automated program in initial design stage that includes all of above process. Innovative vehicle design process with exterior design guide will be proposed for stylist, engineer and packaging department in order to achieve low aerodynamic drag and high fuel efficiency targets.
Journal Article

Adaptive Cruise Control with Collision Avoidance in Multi-Vehicle Traffic Situations

2009-04-20
2009-01-0439
This paper presents a longitudinal control algorithm for an adaptive cruise control (ACC) with collision avoidance (CA) in multiple vehicle traffic situations. The proposed algorithm consists of a multi-target tracking filter, a primary target selection algorithm and an integrated ACC/CA system. The multi-target tracking filter is used to smooth the sensor signal, and makes it possible to apply to a control system. The primary target selection algorithm decides an in-lane target and provides the information to an integrated ACC/CA system in order to drive a subject vehicle smoothly and improve safety in complex traffic situations. Finally, the integrated ACC/CA system computes the desired acceleration. The performance and safety benefits of the multi-vehicle ACC/CA system is investigated via simulations using real data on driving. Simulation results show that the response of multi-vehicle ACC/CA system is more smooth and safer at a change of traffic situations.
Journal Article

Developing Mode Shift Strategies for a Two-Mode Hybrid Powertrain with Fixed Gears

2008-04-14
2008-01-0307
Two-mode hybrid architectures with three planetary gear sets and four clutches will bring both flexibility and complexity to energy management of powertrains. In order to take full advantage of the increased degrees of freedom, highly delicate operation strategies are needed. We develop transmission efficiency models for power-split modes, and present a mode shift strategy assuming no battery power. When battery load leveling is additionally considered, the respective optimal operation set for each mode can be obtained and compared to yield a mode shift algorithm for general hybrid operation situations. The investigation of the strategies shows how frequently each mode is used, and verifies the effectiveness of fixed gear operations. We check the validity of the strategies by applying the algorithm to dynamic optimization and by predicting how it works during an actual driving simulation.
Technical Paper

An Effective Logical Wire Connection Verification Algorithm for Automotive Wiring System

2008-04-14
2008-01-1274
As the number of user selectable electrical modules increases for passenger car, the number of cars with different combinations of option can easily exceed 100,000 cars. It results to a situation where we can not manually verify all the logical connection by making wiring combinations for each car. In this paper, we propose an algorithm that can reduce verification time for all possible wiring with available option combinations. The algorithm separates the whole wiring circuits into independent circuits and verifies the logical connections for each independent circuit with all possible options. The algorithm is time effective so the required time to verify the connections increases logarithmically as the number of possible car increases. The algorithm was implemented as software verification tool and its effectiveness was proved to be feasible.
Technical Paper

Wire Segment Error Locating Algorithm for Wiring Connection Verification Tool

2008-04-14
2008-01-0408
Due to increasing amount of modules and customized options in commercial vehicles, it becomes more and more difficult to verify the circuit design. In this paper, a wire segment error locating algorithm is proposed to automate the exact wire segment error locating process. When a wrong connection is found by existing tool, guided by the exact description of wire segment error, this algorithm can locate exact wire segment error in the connection by searching for the one that has at least one neighboring segment from a correct connection.
X