Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of Intrinsic Characteristics and Dynamic Response of New Energy Vehicle Battery Pack System

2024-04-09
2024-01-2302
As the main power source of new energy vehicles, the durability and fatigue characteristics of the battery pack directly affect the performance of the vehicle. The battery pack system was modelled using multi-body dynamics software, with 7 and 13 degree of freedom models developed. Using the established model, the intrinsic properties of the battery pack are computationally analyzed. To calculate the dynamic characteristics, a sinusoidal displacement excitation is applied to the wheel centre of mass, and the displacement and acceleration of the battery pack centre of mass are calculated for both models.The displacement and acceleration curves at the centre of mass of the battery pack of the two models are compared. The results show that the amplitude of the displacement and acceleration curves at the centre of mass of the 13 degrees of freedom model of the battery pack has decreased significantly.
Technical Paper

Performance Calculation and Analysis of Engine Cooling Fan Based on Bidirectional Fluid Structure Coupling

2024-04-09
2024-01-2813
When the automotive engine cooling fan is actually working, there is a process of interaction and coupling between the fluid and solid domains on the blades. In order to study the influence of the "fluid structure coupling" effect on the aerodynamic and structural performance of fans during operation, a fan performance calculation model was established with and without considering the fluid structure coupling effect of fans. We conducted aerodynamic performance tests on fans, tested the relationship between fan flow rate, static pressure, transmission efficiency and fan speed, and compared and analyzed the calculated fan performance. The aerodynamic performance and structural deformation of the fan were calculated under different flow rates, rotational speeds and environmental temperatures, with and without considering the coupling of fan blades and airflow. The calculation results were compared and analyzed.
Technical Paper

Numerical Investigation on Heat Dissipation Performance of Multi-Fan Cooling Module

2024-04-09
2024-01-2587
To study the heat dissipation performance of the multi-fan cooling module composed of multiple fans and a radiator, numerical models of the radiator and the multi-fan cooling module were established, and heat dissipation performance prediction analysis and application analysis were conducted. In modeling, the Effectiveness-Number of Transfer Units (ε − NTU) method is used to predict the heat dissipation performance of the radiator. The aerodynamic performance of the fan at any speed is obtained by the similarity theorem using the data obtained from the tests at a certain speed. The influence between the fan and the radiator was established by using the flow addition scheme. To validate the established model, heat dissipation performance using 36 radiators and 11 multi-fan cooling modules is measured, and the measured data are compared with the calculations.
X