Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Co-Engineering Durable, Fuel Efficient Engine Oils for Diesel Passenger Cars

2013-01-09
2013-26-0004
Rising fuel prices and global concern over climate change have resulted in the need to deliver vehicles with improved fuel efficiency. The aim is to achieve this without compromising vehicle performance, durability or cost. Passenger car manufacturers worldwide are looking at various ways to optimize fuel economy performance. One option is for a vehicle OEM to re-design engine componentry in an effort to reduce engine friction and thereby reduce tailpipe emissions. There is also an increased focus on the crankcase lubricant as a potential tool to improve engine efficiency. This has led to a close collaborative working model between equipment manufacturers and engine oil marketers to create state of the art fluids capable of delivering higher fuel economy benefits without compromising engine durability. This paper describes a structured approach to the design of an advanced engine oil for a diesel passenger car.
Technical Paper

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis

2007-10-29
2007-01-4059
In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may alter other specifications. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal Component Analysis (PCA) is used as an adjunct to regression analysis in this work, because of its ability to deal with co-linear variables and potential to uncover ‘hidden’ relationships between the variables.
Technical Paper

Rotor Shaft Bearing Analysis for Selected Rand Cam™ Engine Configurations

1995-02-01
950449
Analysis of two types of bearings has been performed for the rotor shaft of the Rand Cam™ engine. Rolling element bearings and a combination of journal and thrust bearings for selected engine configurations have been considered. The engine configurations consist of four, five, six, seven, and eight vanes. The bearing geometry and orientation was also addressed. This analysis is crucial due to the potentially large axial loading on the bearings and the need for the bearing arrangement to be compact and reliable. An emphasis was placed on the combination of fluctuating axial and radial loads and the resulting effect upon the bearings. Tapered roller bearings were found to be effective. However, a combination of journal and thrust bearings is a more compact bearing arrangement for this application. The eight vane configuration is the most desirable configuration based upon the bearing analysis.
X