Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Electrified Heavy-Duty 4-cylinder Engine Concept for Class 8 Trucks

2021-04-06
2021-01-0719
Current industry trends in both powertrain electrification and vehicle drag reduction point towards reduced peak and average power demands from the internal combustion engine in future long-haul class 8 vehicles. Downsizing the engine displacement to match these new performance requirements can yield a benefit in drive cycle efficiency through reduced friction and improved cruise load efficiency. Downsizing by reducing cylinder count avoids the heat loss and friction penalties from reduced per-cylinder displacement and could allow a manufacturer to continue to leverage the highly optimized combustion system from existing heavy-duty engines in the new downsized offering. The concept of this study is to leverage powertrain electrification and the improvement trends in vehicle aerodynamics and rolling resistance to develop a fuel economy focused, downsized heavy duty diesel powertrain for future long-haul vehicles utilizing a reduced cylinder count.
Technical Paper

Quantitative Estimate of the Relation Between Rolling Resistance on Fuel Consumption of Class 8 Tractor Trailers Using Both New and Retreaded Tires

2014-09-30
2014-01-2425
Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

Modeling, Simulation, and Hardware-in-the-Loop Transmission Test System Software Development

2003-03-03
2003-01-0673
This paper describes the development of a generic test cell software designed to overcome many vehicle-component testing difficulties by introducing modern, real-time control and simulation capabilities directly to laboratory test environments. Successfully demonstrated in a transmission test cell system, this software eliminated the need for internal combustion engines (ICE) and test-track vehicles. It incorporated the control of an advanced AC induction motor that electrically simulated the ICE and a DC dynamometer that electrically replicated vehicle loads. Engine behaviors controlled by the software included not only the average crankshaft torque production but also engine inertia and firing pulses, particularly during shifts. Vehicle loads included rolling resistance, aerodynamic drag, grade, and more importantly, vehicle inertia corresponding to sport utility, light truck, or passenger cars.
Technical Paper

Development of a Belt CVT Fluid Test Procedure Using the VT20/25E Belt Box for the DEX-CVT® Specification

2002-10-21
2002-01-2819
The introduction of the continuously variable transmission (CVT) by General Motors required the introduction of a test to evaluate fluid for the ECOTEC VTi transmission. With assistance from Van Doorne's Transmissie (VDT), the belt and sheave supplier for the transmission, a rig was constructed to test fluids in a transmission-like environment without the variability of in-vehicle testing. The test schedule includes testing for fluid friction coefficient, shear stability, and wear rating and is currently subject to further work aimed at confirming repeatability and discrimination. Once confirmed, the new procedure will become part of the DEX-CVT® specification for the new service fluids for the VT20/25E transmissions.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

Paint Integrity and Corrosion Sensor

2002-03-04
2002-01-0205
Atmospheric corrosion of steels, aluminum alloys, and Al-clad aluminum alloys is a problem for many civil engineering structures, commercial and military vehicles, and aircraft. Paint is usually the primary means to prevent the corrosion of steel bridge components, automobiles, trucks, and aircraft. Under ideal conditions, the coating provides a continuous layer that is impervious to moisture. At present, maintenance cycles for commercial and military aircraft and ground vehicles, as well as engineered structures, is based on experience and appearance rather than a quantitative determination of coating integrity. To improve the maintenance process and reduce costs, sensors are often used to monitor corrosion. The present suite of sensors designed to detect corrosion and marketed to predict the lifetime of the engineered components, however, are not useful for determining the condition of the protective paint coatings.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
Technical Paper

EHC Impact on Extended Hot Soak Periods

1995-10-01
952418
Emission performance of a late model vehicle equipped with an electrically-heated catalytic converter (EHC) system was evaluated after extended vehicle soak periods that ranged from 30 to 180 minutes. As soak periods lengthened, NMHC and CO emissions measured in hot transient driving cycles increased by 125 percent and 345 percent, respectively. These tests were baseline operations which had no resistance heating or secondary air injection to the converter system. Sources of increased NMHC and CO emissions as a function of vehicle soak time were both the converter system cool-down characteristics and engine restart calibration strategy. For soak periods of 30 and 60 minutes, EHC resistance heating without secondary air injection resulted in large improvements in NMHC and CO emission performance (i.e., 74 percent and 54 percent lower NMHC emissions versus no heat, no air operation after a 30- and 60-minute period, respectively).
Technical Paper

Effect of Gas Composition on Octane Number of Natural Gas Fuels

1992-10-01
922359
The composition of natural gas delivered through the pipeline varies with time and location around the USA. These variations are known to affect engine performance and emissions through changes in fuel metering characteristics and knock resistance of the fuel. High output, low emissions natural gas engines are being developed that take advantage of the high knock resistance of natural gas. These optimized engines are operated close to knock-limited power where changes in fuel knock resistance can cause operational problems. Octane tests were conducted on natural gas blend fuels using a CFR octane rating engine. Two relationships between motor octane number and fuel composition were established. A correlation for motor octane number versus the reactive hydrogen-carbon ratio was developed, and octane weighting factors, which used the molar composition of the fuel to predict motor octane number, were also found.
Technical Paper

Experimental Study of Wet-Brake Friction

1985-09-01
851575
An experimental program was designed to determine friction characteristics between brake pads and metal rotors that could indicate a brake fluid's propensity to cause chatter in wet-brakes. Friction was measured on a bench version of the John Deere wet-brake qualification system. Rotor and pad supports were made very rigid to avoid chatter in the simulator. One type of pad was run on cast-iron and mild steel rotors using two reference oils, one giving unacceptable levels of chatter and the other giving acceptable levels as previously determined in full-scale tests on the Deere system. The outstanding discriminating characteristic was the drop in friction from breakaway of the pad from the rotor. The ratio of the initial drop in the friction coefficient between unacceptable and acceptable oils for all conditions of the testing ranged from 1.7 to 2.0
X