Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Evaluating the Impact of Connected Vehicle Technology on Heavy-Duty Vehicle Emissions

2023-04-11
2023-01-0716
Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can improve fuel economy by generating an energy-efficient velocity trajectory for vehicles to follow in real time. Southwest Research Institute (SwRI) demonstrated a 7% reduction in energy consumption for fully loaded class 8 trucks using SwRI’s eco-driving algorithms. However, the impact of these schemes on vehicle emissions is not well understood. This paper details the effort of using data from SwRI’s on-road vehicle tests to measure and evaluate how eco-driving could impact emissions. Two engine and aftertreatment configurations were evaluated: a production system that meets current NOX standards and a system with advanced aftertreatment and engine technologies designed to meet low NOX 2031+ emissions standards.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Demonstration of Energy Consumption Reduction in Class 8 Trucks Using Eco-Driving Algorithm Based on On-Road Testing

2022-03-29
2022-01-0139
Vehicle to Everything (V2X) communication has enabled on-board access to information from other vehicles and infrastructure. This information, traditionally used for safety applications, is increasingly being used for improving vehicle fuel economy [1-5]. This work aims to demonstrate energy consumption reductions in heavy/medium duty vehicles using an eco-driving algorithm. The algorithm is enabled by V2X communication and uses data contained in Basic Safety Messages (BSMs) and Signal Phase and Timing (SPaT) to generate an energy-efficient velocity trajectory for the vehicle to follow. An urban corridor was modeled in a microscopic traffic simulation package and was calibrated to match real-world traffic conditions. A nominal reduction of 7% in energy consumption and 6% in trip time was observed in simulations of eco-driving trucks.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Light Duty Vehicle Life Cycle Analysis

2021-04-06
2021-01-0789
The short-term future direction of the automotive transportation sector is uncertain. Many governments and environmental localities around the world are proposing internal combustion engine (ICE) bans and enacting large subsidy programs for zero-tailpipe emissions vehicles powered by batteries or fuel-cells. Such policies can be effective in driving the consumer towards specific powertrains. The reason for such aggressive change is to reduce the sector’s carbon footprint. However, it is not clear if these proposals will reduce greenhouse gas (GHG) emissions. Emissions from raw material extraction, manufacturing, and power generation are shadowed by the focus on reducing the reliance on fossil fuel use. Emissions from non-tailpipe sources should also be considered before pushing for a rapid change to powertrains. Life-cycle analysis (LCA) can assess the GHG emissions produced before, during and after the life of a vehicle in a cradle-to-grave analysis.
Technical Paper

Solid Particle Emissions from a Diesel Fuel Based Burner Platform

2021-04-06
2021-01-0627
Diesel engines are the primary power source for the medium and heavy-duty truck applications in the US. There is a wide range of regulatory developments being considered in the US that would impact the field of diesel engines and aftertreatment systems, such as the California Air Resources Board’s (CARB) low NOX standards and the extended durability requirement for aftertreatment systems. The proposed durability standards would require manufacturers to develop aftertreatment systems targeting up to 800,000 miles of full useful life (FUL) for Heavy heavy-duty (HHD) Application. Robust design and validation of aftertreatment systems is critical to ensure compliance with such stringent regulations. Several methodologies are being considered by the regulatory agencies for the compliance validation process, including the option of accelerated aging of the aftertreatment systems for a portion of the FUL.
Technical Paper

Electrified Heavy-Duty 4-cylinder Engine Concept for Class 8 Trucks

2021-04-06
2021-01-0719
Current industry trends in both powertrain electrification and vehicle drag reduction point towards reduced peak and average power demands from the internal combustion engine in future long-haul class 8 vehicles. Downsizing the engine displacement to match these new performance requirements can yield a benefit in drive cycle efficiency through reduced friction and improved cruise load efficiency. Downsizing by reducing cylinder count avoids the heat loss and friction penalties from reduced per-cylinder displacement and could allow a manufacturer to continue to leverage the highly optimized combustion system from existing heavy-duty engines in the new downsized offering. The concept of this study is to leverage powertrain electrification and the improvement trends in vehicle aerodynamics and rolling resistance to develop a fuel economy focused, downsized heavy duty diesel powertrain for future long-haul vehicles utilizing a reduced cylinder count.
Technical Paper

Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust

2020-09-15
2020-01-2190
Two methods of sampling exhaust emissions are typically used for characterizing emissions from diesel engines: total dilution which uses a constant volume sampling (CVS) system and partial flow dilution which relies on proportionally diluting a small part from the main exhaust stream. The CVS dilutes the entire exhaust flow to a constant volumetric flowrate which allows for proportional sampling of the exhaust species during transient engine operation. For partial dilution sampling during transient engine operation, obtaining a proportional sample is more rigorous and dilution of the extracted sample must be continuously changed throughout the cycle in order for the extracted sample flowrate to be proportional to the continuously changing exhaust flow. Typically, regulated emissions measured using both methods for an engine platform have shown good correlation. The focus for this work was on the experimental investigation of the two methods for the measurement of unregulated species.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Semi-Volatile Organic Compounds from a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-09-09
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for measuring unregulated emissions.
Technical Paper

Evaluation of Gasoline Additive Packages to Assess Their Ability to Clean Up Intake Valve Deposits in Automotive Engines

2019-04-02
2019-01-0261
The majority of passenger car and light-duty trucks, especially in North America, operate using port-fuel injection (PFI) engines. In PFI engines, the fuel is injected onto the intake valves and then pulled into the combustion chamber during the intake stroke. Components of the fuel are unstable in this environment and form deposits on the upstream face of the intake valve. These deposits have been found to affect a vehicle’s drivability, emissions and engine performance. Therefore, it is critical for the gasoline to be blended with additives containing detergents capable of removing the harmful intake valve deposits (IVDs). Established standards are available to measure the propensity of IVD formation, for example the ASTM D6201 engine test and ASTM D5500 vehicle test.
Technical Paper

Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 2: High Load

2019-04-02
2019-01-0237
The abnormal autoignition of the unburned gas, namely knock, at high loads is a major challenge for modern spark ignited engines. Knock prevents the application of high compression ratios due to the increased unburned gas temperature, and it becomes increasingly severe for downsized engines with high specific powers. The current paper reports on the potential of utilizing continuously variable valve actuation (VVA) and low-pressure exhaust gas recirculation (EGR) to reduce knock tendency at high loads. Five speed / load points were investigated on a 1.6 L turbocharged gasoline direct injection engine. The brake specific fuel consumption (BSFC) response to the valve phasing and the intake valve lift was investigated with the design of experiment (DoE) approach. The DoE was conducted using a Box-Behnken surface response model. The results exhibited insensitive response of BSFC to intake valve lift and overlap.
Technical Paper

Evaluation of Diesel Spray with Non-Circular Nozzle - Part I: Inert Spray

2019-01-15
2019-01-0065
Numerous studies have characterized the impact of high injection pressure and small nozzle holes on spray quality and the subsequent impact on combustion. Higher injection pressure or smaller nozzle diameter usually reduce soot emissions owing to better atomization quality and fuel-air mixing enhancement. The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. An alternate approach impacting spray quality is investigated in this paper, specifically the impact of non-circular nozzles. The concept was explored experimentally in an optically accessible constant-volume combustion chamber (CVCC). Non-reacting spray evaluations were conducted at various ambient densities (14.8, 22.8, 30 kg/m3) under inert gas of Nitrogen (N2) while injection pressure was kept at 100 MPa. Shadowgraph imaging was used to obtain macroscopic spray characteristics such as spray structure, spray penetration, and the spray cone angle.
Technical Paper

Polycyclic Aromatic Hydrocarbons in Diesel Engine Exhaust Both with and without Aftertreatment

2018-09-10
2018-01-1812
Since the conception of the internal combustion engine, smoky and ill-smelling exhaust was prevalent. Over the last century, significant improvements have been made in improving combustion and in treating the exhaust to reduce these effects. One group of compounds typically found in exhaust, polycyclic aromatic hydrocarbons (PAH), usually occurs at very low concentrations in diesel engine exhaust. Some of these compounds are considered carcinogenic, and most are considered hazardous air pollutants (HAP). Many methods have been developed for sampling, handling, and analyzing PAH. For this study, an improved method for dilute exhaust sampling was selected for sampling the PAH in diesel engine exhaust. This sampling method was used during transient engine operation both with and without aftertreatment to show the effect of aftertreatment.
Technical Paper

Impact of Engine Age and Engine Hardware on Low-Speed Pre-Ignition

2018-09-10
2018-01-1663
Low-speed pre-ignition (LSPI) is a well-studied phenomenon in boosted, spark ignition engines. The impact of lubricant formulation has received a lot of attention in recent years, yet the impact of engine hardware and engine wear on LSPI is still not fully understood. This paper addresses some of these questions using results from multiple installations of the GM 2.0 L LHU engine platform. In the first part of the study, the effect of engine life on LSPI activity was observed, and it was found that engines were susceptible to variations in LSPI activity during the initial LSPI tests with the activity eventually reaching a “stabilized” level. It was further observed that the LSPI activity generally continued to decline at a steady rate as the engine aged. For engines used in LSPI testing, the life of the engine is often limited as LSPI activity decays with age.
X