Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

2014-04-01
2014-01-1552
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions

2013-04-08
2013-01-1301
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III emissions standard which will require significant reductions of hydrocarbon (HC) and oxides of nitrogen (NOx) from current levels. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines so the time required to achieve effective emissions control with current aftertreatment devices is considerably longer. The objective of this study was to determine the potential of a novel diesel cold-start emissions control strategy for achieving LEV III emissions. The strategy combines several technologies to reduce HC and NOx emissions before the start of the second hill of the FTP75.
Technical Paper

Investigation of Alternative Combustion Crossing Stoichiometric Air Fuel Ratio for Clean Diesels

2007-07-23
2007-01-1840
Alternative combustion crossing stoichiometric air fuel ratio was investigated to utilize a 4-way catalyst system with LNT (lean NOx trap). The chemical mechanism of restricting soot formation reactions with low combustion temperature was combined with the physical mechanism of reducing smoke by lowering local equivalence ratio to enable low smoke rich and near rich combustion. A new combustion chamber for spatially and timely mixture formation phasing was developed to combine the two mechanisms and allow smooth EGR changing over a wide load range. Through this investigation, rich and near rich combustion to effectively utilize a 4-way catalyst system was realized. In addition, conditions suitable for LNT sulfur regeneration were realized from light to medium load.
Technical Paper

Investigation of Alternative Combustion, Airflow-Dominant Control and Aftertreatment System for Clean Diesel Vehicles

2007-07-23
2007-01-1937
A new diesel engine system adopting alternative combustion with rich and near rich combustion, and an airflow-dominant control system for precise combustion control was used with a 4-way catalyst system with LNT (lean NOx trap) to achieve Tier II Bin 5 on a 2.2L TDI diesel engine. The study included catalyst temperature control, NOx regeneration, desulfation, and PM oxidation with and without post injection. Using a mass-produced lean burn gasoline LNT with 60,000 mile equivalent aging, compliance to Tier II Bin 5 emissions was confirmed for the US06 and FTP75 test cycles with low NVH, minor fuel penalty and smooth transient operation.
X