Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Accurate Speed Control of the DC Motor for Anti-Lock Braking System

2015-04-14
2015-01-0654
The permanent-magnet DC motor, which is directly connected to the hydraulic pump, is a significant component of hydraulic control unit (HCU) in an anti-lock braking system (ABS). It drives the pump to dump the brake fluid from the low-pressure accumulator back to master cylinder and makes sure the pressure decreases of wheel cylinder in ABS control. Obviously, the motor should run fast enough to provide sufficient power and prevent the low-pressure accumulator from fully charging. However, the pump don't need always run at full speed for the consideration of energy conservation and noise reduction. Therefore, it is necessary to accurately regulate the speed of the DC motor in order to improve quality of ABS control. In this paper, an accurate speed control algorithm was developed for the permanent-magnet DC motor of the ABS to implement the performance of the system, reduce the noise and save the energy in the meanwhile.
Journal Article

Modeling and Simulation of Intelligent Driving with Trajectory Planning and Tracking

2014-04-01
2014-01-0108
This paper proposes a novel modeling and simulation environment developed under Matlab/Simulink with friendly and intuitive graphic user interfaces, aimed to enable math-based virtual development and test of intelligent driving systems. Six typical driving maneuvers are first proposed, which are further abstracted into two atomic sub-maneuvers: lane following and lane change, as any maneuvers can be the combinations of these two. A generic trajectory planning and path tracking control algorithm are developed to deal with the generality and commonality of the lane change function with optimization among safety, comfort and efficiency in performing the lane change maneuver. Some typical simulations are conducted with results demonstrating the practical usefulness, efficiency and convenience in using this proposed tool.
Journal Article

A Vision-Based Forward Collision Warning System Developed under Virtual Environment

2014-04-01
2014-01-0754
This paper presents a novel approach of developing a vision-based forward collision warning system (FCW) under a virtual and real-time driving environment. The proposed environment mainly includes a 3D high-fidelity virtual driving environment developed with computer graphics technologies, a virtual camera model and a real-time hardware-in-the-loop (HIL) system with a driver simulator. Some preliminary simulation has been conducted to verify that the proposed virtual environment along with the image generated by a virtual camera model is valid with sufficient fidelity, and the real-time HIL development system with driver in the loop is effective in the early design, test and verification of the FCW and other similar ADAS systems.
Technical Paper

A Real-Time Virtual Simulation Environment for Advanced Driver Assistance System Development

2014-04-01
2014-01-0194
This paper presents a novel real-time virtual simulation environment for advanced driver assistance systems (ADAS). The proposed environment mainly includes a 3D high-fidelity virtual driving environment developed with computer graphics technologies, a virtual camera model and a real-time hardware-in-the-loop (HIL) system with a driver simulator. Some preliminary simulation and experiment have been conducted to verify that the proposed virtual environment along with the image generated by a virtual camera model is valid with sufficient fidelity, and the real-time HIL development system with driver in the loop is effective in the early design, test and verification of ADAS systems.
Technical Paper

Development of Active Control Strategy for Flat Tire Vehicles

2014-04-01
2014-01-0859
This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
X