Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Experimental Analysis of Steering System Moan Noise

2021-09-22
2021-26-0307
Steering system is responsible for providing a precise directional control to the vehicle. The Hydraulic Power Assisted Steering (HPAS) system is commonly used in passenger cars and commercial vehicles due to low cost. Power steering pump develops and delivers required pressure to provide assistance while steering. It reduces the effort required to steer the vehicle. Steering pump (generally vane type) is a critical part providing hydraulic pressure assistance to rack and pinion or gear box. Basically the hydraulic pump noise can be classified as ‘Moan Noise’ and ‘Whine Noise’. The noise generated by power steering pump pressure pulsation is termed as ‘Moan’ and ‘Whine’ based on operational induce frequency. As power train becomes quieter, it becomes more perceivable at typical engine operating speed range and gives impression of poor refinement and quality.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Technical Paper

Bus NVH Refinement: A Journey towards Comfortable Future

2021-09-22
2021-26-0272
The future of bus transit in new millennium is promising. This optimism is based on an anticipated long-term slowdown in growth of suburbs and revitalization of central cities. It reflects and escalates the public concern with traffic congestion, sprawl and pollution. This calls for double the use of public transport to address above issues. It calls for changing the mind-set of society towards public transports like buses, coaches etc. This could happen if bus design ensures right comfort, safety and TCO by ensuring refined bus transport. Hence, it is responsibility of OEMs to provide the new generation buses and coaches, which will ensure the public demands of comforts in terms of NVH refinement. This paper covers the unique approach used to convert the existing bus NVH refinement to next level as a short-term solution and with the intention of articulating NVH strategies for new generation bus development.
Technical Paper

Engine Mount Stiffness Effect on Joint Integrity and Durability

2021-09-22
2021-26-0514
Powertrain mounts locations and stiffness in vehicle plays very important role in improving vehicle noise and vibration, which is caused by engine firing forces and road disturbances. Once locations are finalized, based on initial calculation and packaging then it is very much critical to play with mount stiffness to achieve required NVH level in vehicle. This paper describes the effect of mount stiffness on the bolted joint integrity. Stiffness fine tuning is done to improve vehicle level NVH and various iteration are done with change in stiffness values of A, B and C mounts. When stiffness specifications are finalized, it is recommended to acquire road load data on the finalized stiffness mount and check for bolted joint integrity since load signature is varying significantly on mount w.r.t stiffness change. If we change mount stiffness value from 128N/mm to 98N/mm, then loads on particular mount is getting increased from 4.5KN to 6.5KN in one of the track testing.
Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Experimental Analysis of HVAC System Level Noise in Mobile Air-Conditioning (MAC) System

2020-08-18
2020-28-0035
With the advent of new technologies and rigorous research and development work going on vehicle engines, cars are becoming quieter and more refined than ever before. This has led to the observance of subjective noises being audible to passenger compartment which were earlier masked behind engine noise. The vehicle HVAC system has several moving parts and transient flow of refrigerant which can cause certain types of irritant noise. Thus having a refinement in of air-conditioning (AC) system would aid us in cutting down on this parasitic noise source. Thus noise refinement should be one of the important parameters during the design and development of the Heating, Ventilation and Air-Conditioning (HVAC) system for a vehicle program.
Technical Paper

Prediction and Resolution of Vehicle In-Cab Noise due to Powertrain Induced Excitations

2019-01-09
2019-26-0177
Vehicle NVH is one of the critical performance quality parameter and it consists of vibration levels at tactile points and noise levels at ear locations for different vehicle running conditions. There are many sources of noise and vibration in a vehicle, and powertrain is one of the main source. Therefore, it is important to understand and resolve powertrain induced noise and vibration issues at early design stage with efficient simulation techniques. The work presented here deals with the use of systematic CAE approach for prediction and resolution of structure borne in-cab noise due to powertrain excitations. During NVH testing of SUV vehicle, boom noise is observed at low frequency. Detailed full vehicle level simulation model consisting of vibro-acoustic trimmed BIW, front and rear suspension, and driveline with powertrain modal model is built.
Technical Paper

Identification of Gear Shift Quality as a Key Attribute in Commercial Vehicle Development

2017-11-27
2017-01-7011
Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper

How to Enhance Gear Shift Feel of North-South Transmission Layout

2016-10-17
2016-01-2357
Globalization has intensively driven focus of car manufacturers on comfort and ergonomics. Luxuries are becoming essential features of product mix. Customer’s expectations and desires are changing because of cut throat competition and increasing variety of options. In order to sustain in marketplace, OEM has to be competitive while providing features and options with appropriate quality. Vigorously changing dimensions and definitions of comfort level, luxury and aesthetics has driven the intense focus of OEM’s on customer touch points, customer touch points are those components of vehicle which customer accesses while driving the vehicle and they play vital role in generating drive feel of vehicle. Customer’s drive feel about the vehicle is most complex and critical factor and is of subjective nature. Now days drive feel is an important aspect of product differentiation. Gear shift feel is very crucial touch point in overall drive feel of vehicle.
Technical Paper

Multivariate Analysis to Assess the Repeatability of Real World Tests

2016-04-05
2016-01-0320
In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
Technical Paper

Optimization of State Machine Architecture for Automotive Body Control

2016-02-01
2016-28-0233
The OEM's aim is to reduce development time and testing cost, hence the objective behind this work is to achieve a flexible stateflow model so that changes in the application during supply chain or development, on adding/deleting any switches, varying timer cycle, changing the logic for future advancements or else using the logic in different application, would end in minimal changes in the chart or in its states which would reflect least changes in the code. This research is about designing state machine architecture for chime/buzzer warning system and wiper/washer motor control system. The chime/buzzer stateflow chart includes various input switches like ignition, parking, seat belt buckle, driver door and speed accompanied with warning in the form of LED, lamp and buzzer. The logic is differentiated according to gentle and strong warning. Various conditions and scenarios of the vehicle and driver are considered for driver door and seat belt which is resolved in the chart.
Technical Paper

Prescriptive Modeling, Simulation and Performance Analysis of Mild Hybrid Vehicle and Component Optimization

2015-01-14
2015-26-0010
Reckoning today's environmental rules, legislative regulation and market requirements- the automotive industry of late has witnessed an increased vigor and enthusiasm by auto makers towards electrification of vehicles across all platforms in a bid to improve fuel economy and performance. Hybridization of a vehicle often involves the use of expensive high performance motors and large battery packs. However due to the challenges associated with the packaging of bulky battery and motor systems in existing drive train, mild hybrid systems have been preferred over strong or full hybrids especially in current production models as they don't entail any major change in architecture and the reduced battery size, both of which provide for easier packaging of components.
Technical Paper

Optimization of an Air Intake System to Reduce Multiple Whoosh Noises from an Engine

2013-04-08
2013-01-1714
The direct injection common rail technology coupled with variable geometry turbocharger on the modern diesel engine has improved the diesel engine performance (power and torque) greatly as compared to the conventional diesel engine. Diesel engine performance is greatly dependent on the abundant air availability. And it is facilitated by Variable Geometry Turbocharger (VGT) in modern engines. The engines with variable geometry turbocharger offer quick response to the demand in various driving conditions especially in transient driving conditions. During transient driving conditions, the air intake system experiences a rapid air flow pressure and velocity changes. The pressure differentials across air intake system during transient events allow flow direction changes in the system. This kind of phenomenon generates unusual “Multiple Whoosh” noises in the air intake system of the sport utility vehicle engine.
Technical Paper

Thermal Management in Engine Compartment for Efficient Working of the Intercooler on a Rear Engine Vehicle

2012-04-16
2012-01-1044
This paper is related to a vehicle with rear engine which is turbo charged and inter cooled. Due to packaging constraints the intercooler was placed in front of turbocharger and was exposed to hot air radiated out from the turbo charger. This was in turn reducing the efficiency of the intercooler. In such scenario, it is essential to shield the turbo charger from the intercooler for proper hot air management. Also rear engine vehicles don't have the benefit of ram air affect. This necessitates increasing the air entering in to the core of the intercooler. Both the above mentioned issues associated with such a vehicle was resolved by ensuring that the hot air from turbo-charge is guided away from the intercooler as well as the air flow to Intercooler is increased. Guiding or throwing out the hot air away from Intercooler was done by introducing a heat shield or a baffle between the two.
Technical Paper

Practical Approach for Vehicle HVAC Noise Reduction and Comfort Improvement

2011-05-17
2011-01-1592
Comfortable cabin environment from temperature, noise and vibration point of view is one of the most desirable aspects of any vehicle operating in hot or cold environment. Noise generated from HVAC system is one of the most irritating phenomena resulting in customer dissatisfaction and complaints. It becomes absolutely necessary to have low HVAC noise levels when the target market has hot weather all round the year. Balance between control of temperature in desired way with least possible noise and vibration is the key for HVAC performance optimization within constrains posed by design and cost. This paper describes the approach for NVH refinement of front HVAC system proposed for a vehicle with limited off-road capability for which packaging constraints and late changes related to airflow and HVAC unit design for meeting comfort and crash requirements resulted in deterioration of noise and vibrations while operation.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
X