Refine Your Search

Topic

Author

Search Results

Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
Technical Paper

Development of an Efficient Vehicle Energy Management System for Fuel Cell Electric Vehicles

2024-01-16
2024-26-0173
Fuel cell electric vehicles generally have two power sources – the fuel cell power system and a high voltage battery pack - to power the vehicle operations. The fuel cell power system is the main source of power for the vehicle and its operations are supported by the battery pack. The battery pack helps to tackle the dynamic power demands from the vehicle such as during acceleration, to which the response of the fuel cell might be slower. The battery is also used to recover the energy from regeneration during braking and can also be used to extend the range of the vehicle in case the storage tanks runs out of hydrogen. In order to maximize the fuel efficiency of the fuel cell power system it is critical that these two power sources are used in conjunction with each other in an optimal manner.
Technical Paper

Hydrogen Refilling Optimizations Through 1-D Simulations for Commercial Vehicles

2024-01-16
2024-26-0176
Fuel cell electric vehicles (FCEVs) and battery electric vehicles are being touted worldwide by the automotive industry and policy makers as the answer to decarbonizing the transportation sector. FCEVs are especially suited for commercial vehicle applications as they offer very short re-fueling times that is comparable to conventional internal combustion engine vehicles. While this is entirely possible there are host of challenges that include safety, that need to be addressed to make short refilling times possible for commercial vehicles where the hydrogen storage requirement is higher (25 kg or more). This is due to the rise in temperature of the hydrogen in the cylinder due to compression and the negative Joule-Thompson coefficient. The SAE J2601 standard limits the safe temperature limit of hydrogen gas in the cylinder to 85 °C during filling.
Technical Paper

Performance Evaluation Study to Optimize the NOx Conversion Efficiency of SDPF Catalyst for BS6 RDE/OBD2 Engine Application

2024-01-16
2024-26-0161
To meet future emission levels, the automotive industry is trying to reduce tailpipe emissions through both possible pathways, i.e. emission from engines as well as and the development of novel catalytic emission control concepts. The present study will focus on the close coupled SCR on Filter commonly known as SDPF which is a main pathway to reduce NOx along with particulate mass and number for light duty passenger cars and sport utility vehicles for BS 6 RDE/OBD 2 and future legislation like BS-7. The SDPF is a challenging technology as it is critical component in exhaust after treatment system involving in NOx and PM/PN reductions hence careful optimization of this technology is necessary in terms of space velocity requirements, temperature, feed NOx emission levels, particulate mass and ash holding capacities, NH3 storage on the SDPF, and back pressure.
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

A Study on Effect of Regenerative Braking on Vehicle Range and Axle Life

2024-01-16
2024-26-0240
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels.
Technical Paper

Test Bench Phase Shift-ICE to EV

2024-01-16
2024-26-0368
Since last decade automotive Industry is witnessing transition from ICE to EV due to stringent environmental laws by government bodies and technological breakthrough. EV technology is emerging day by day. Biggest challenge in front of OEM is the phase shift from ICE to EV. OEM need to decide on glide path for test rig development for this change to support ICE & EV powertrain validation to deliver reliable product to their customers. In EV development, major focus is on investment for battery development. Hence, for the Motor and Gearbox validation balanced approach is to upgrade existing ICE test bench for the EV with minimum effort and cost. This paper provides details on need and approach required to make the ICE test bench capable for EV powertrain validation. Proposed methodology helps to support both type of powertrain and have maximum utilization of the test bench.
Technical Paper

Design Implementation through Computational Fluid Dynamics (CFD) Analysis to Reduce Fuel Filling Time in NGVs

2024-01-16
2024-26-0309
In the past few decades CNG (Compressed Natural Gas) fuel growing as an alternate fuel due to its more economically as compared to Gasoline & Diesel fuels by vehicle running cost in both passenger as well as commercial vehicles, additionally it is more environment friendly & safer fuel with respect to gasoline & diesel. At standard temperature & pressure fuel density of Natural Gas (0.7-0.9 kg/m3) is lower than Gasoline (715-780 kg/m3), Diesel (849~959 kg/m3), therefore CNG fuel require higher storage space as compared to Gasoline & Diesel & also it stores at very high pressure (200-250 bar) to further increase the fuel density 180 kg/m3 (at 200 bar) and for 215 kg/m3 (at 250 bar) in CNG cylinders so that max fuel contains in the cylinders and increase the vehicle running range per fuel filling & reduces its fuel filling frequency at filling stations.
Technical Paper

Optimization of Drum Brake System in HCVs Using Two-Way Coupled CFD Approach

2023-11-05
2023-01-1874
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated.
Technical Paper

Battery Lifetime & Capacity Fade Prediction for Electric Vehicles Using Coupled Electro-Thermal Simulation Methodology

2023-09-14
2023-28-0003
Global concerns over availability and environmental impact of conventional fuels in recent years have resulted in evolution of Electric Vehicles. Research and development focus has shifted towards one of its main components, Lithium-ion battery. Development of high performing, long lasting batteries within challenging timelines is the need of the industry. Lithium-ion batteries undergo “battery ageing”, limiting its energy storage and power output, affecting the EV performance, cost & life span. It is critical to be able to predict the rate of battery ageing & the impact of different environmental conditions on battery lifetime/capacity. Conventionally, extensive physical vehicle level testing is carried out on batteries to map the battery capacity in various conditions. This is a lengthy & expensive process affecting the product development cycle, paving the way for an alternative process.
Technical Paper

Development of Hydrogen Fuel Cell Bus Technology for Urban Transport in India

2019-01-09
2019-26-0092
Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology is considered for automotive applications due to rapid start up, energy efficiency, high power density and less maintenance. In line with National Hydrogen Energy Roadmap of Govt. of India that aims to develop and demonstrate hydrogen powered IC engine and fuel cell based vehicle. TATA Motors Ltd. has designed, developed and successfully demonstrated “Low Floor Hydrogen Fuel Cell Bus” which comprises of integrated fuel cell power system, hydrogen storage and dispensing system. The fuel cell power system, converts the stored chemical energy in the hydrogen to DC electrical energy. The power generated is regulated and used for powering the traction motor. The development of fuel cell bus consists of five stages: Powertrain sizing as per vehicle performance targets, fuel cell stack selection and balance of plant design and development, bus integration, hydrogen refueling infrastructure creation and testing of fuel cell bus.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

Hill Start Assistance Developed for Buses Equipped with AMT

2016-04-05
2016-01-1111
The AMT (Automated Manual Transmission) has attracted increasing interest of automotive researches, because it has some advantages of both MT (Manual Transmission) and AT (Automatic Transmission), such as low cost, high efficiency, easy to use and good comfort. The hill-start assistance is an important feature of AMT. The vehicle will move backward, start with jerk, or cause engine stalling if failed on the slope road. For manual transmission, hill-start depends on the driver's skills to coordinate with the brake, clutch and throttle pedal to achieve a smooth start. However, with the AMT, clutch pedal is removed and therefore, driver can’t perceive the clutch position, making it difficult to hill-start with AMT without hill-start control strategy. This paper discussed about the hill start control strategy and its functioning.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Experimental Investigation on the Effect of Two Different Multiple Injection Strategies on Emissions, Combustion Noise and Performances of an Automotive CRDI Engine

2016-04-05
2016-01-0871
An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
Technical Paper

Approach to Control the in Cab Noise without Affecting Passenger Comfort in AC Midi Buses

2015-01-14
2015-26-0125
This paper discusses various fruitful iterations / experiments performed to reduce air flow induced noise without compromising on total air flow requirement for thermal comfort and ways to avoid heat ingress inside the bus. Also the paper discusses the devised process for noise reduction through front loading of computer aided engineering and computational fluid dynamics analysis. Air conditioning buses in light commercial vehicle (LCV) segment is growing market in India, especially for applications like staff pick-up and drop, school applications and private fleet owners. The air-conditioning system is typically mounted on bus roof top and located laterally and longitudinally at center. It is an easiest and most feasible way to package air conditioning system to cater the large passenger space (32 to 40 seats) with the conditioned air. This makes air conditioning duct design simple and commercially viable.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Ultra-Capacitor based Hybrid Energy Storage and Energy Management for Mild Hybrid Vehicles

2014-04-01
2014-01-1882
In a Mild hybrid electric vehicle, a battery serves as a continuous source of energy but is inefficient in supplying peak power demands required during torque assists for short duration. Moreover, the random charging and discharging that result due to varying drive cycle of the vehicle affects the life of the battery. In this paper, an Ultra-capacitor based hybrid energy storage system (HESS) has been developed for mild hybrid vehicle which aims at utilizing the advantages of ultracapacitors by combining them with lead-acid batteries, to improve the overall performance of the battery, and to increase their useful life. Active current-sharing is achieved by interfacing ultracapacitor to the battery through a bi-directional boost dc-dc converter.
X