Refine Your Search

Topic

Author

Search Results

Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
Technical Paper

Development of an Efficient Vehicle Energy Management System for Fuel Cell Electric Vehicles

2024-01-16
2024-26-0173
Fuel cell electric vehicles generally have two power sources – the fuel cell power system and a high voltage battery pack - to power the vehicle operations. The fuel cell power system is the main source of power for the vehicle and its operations are supported by the battery pack. The battery pack helps to tackle the dynamic power demands from the vehicle such as during acceleration, to which the response of the fuel cell might be slower. The battery is also used to recover the energy from regeneration during braking and can also be used to extend the range of the vehicle in case the storage tanks runs out of hydrogen. In order to maximize the fuel efficiency of the fuel cell power system it is critical that these two power sources are used in conjunction with each other in an optimal manner.
Technical Paper

Hydrogen Refilling Optimizations Through 1-D Simulations for Commercial Vehicles

2024-01-16
2024-26-0176
Fuel cell electric vehicles (FCEVs) and battery electric vehicles are being touted worldwide by the automotive industry and policy makers as the answer to decarbonizing the transportation sector. FCEVs are especially suited for commercial vehicle applications as they offer very short re-fueling times that is comparable to conventional internal combustion engine vehicles. While this is entirely possible there are host of challenges that include safety, that need to be addressed to make short refilling times possible for commercial vehicles where the hydrogen storage requirement is higher (25 kg or more). This is due to the rise in temperature of the hydrogen in the cylinder due to compression and the negative Joule-Thompson coefficient. The SAE J2601 standard limits the safe temperature limit of hydrogen gas in the cylinder to 85 °C during filling.
Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

Effect of Spot Weld Parameter on HAZ of Advanced High Strength Steel Joint

2024-01-16
2024-26-0187
To meet different target of light-weighting, lower fuel economy, crash safety and emission requirement, advanced high strength steel (AHSS) is commonly used in automotive vehicles and has become popular now a days. AHSS material up-to 1500 MPa is commonly used for structural components and major reinforcement of automotive BIW. Manufacturing of AHSS material requires precise control of chemical composition, and subsequent rolling and heat treatment to get optimum combination of required phases In most of the AHSS material microstructure, martensite is present along with ferrite or other phases. Hot stamp steel with strength level 1500 MPa strength also have martensite phase in microstructure after press hardening. However during heating and cooling cycle in resistance spot welding, martensite phase tempering affects hardness at Heat Affected Zone (HAZ).
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

Evaluation of Interface Microstructure and Bonding Strength for Dissimilar Rotary Friction Welding of E46 and AA6061-T6

2024-01-16
2024-26-0195
Nowadays, friction welding is recognised as a highly productive and economic joining process for similar as well as dissimilar welding of automobile and aerospace components. Friction welding is the viable solution to offset the challenges of dissimilar fusion welding due to varying thermal and physical properties as well as limited mutual solubility. This study investigated interface microstructure and bonding strength of dissimilar rotary friction welding of 3.15 mm E46 plate and 45 mm AA6061-T6 rod. The direct drive rotary friction welding of E46 and AA6061-T6 is performed at combinations of two different friction times (4 sec and 7 sec) and forging pressure (108 MPa and 125 MPa). Mechanical bonding strength at the interface is evaluated based on the push-off and multistep shear tests. Further, a fractured steel surface was visually examined to understand the failure mechanism of welded joints.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

A Study on Effect of Regenerative Braking on Vehicle Range and Axle Life

2024-01-16
2024-26-0240
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels.
Technical Paper

Test Bench Phase Shift-ICE to EV

2024-01-16
2024-26-0368
Since last decade automotive Industry is witnessing transition from ICE to EV due to stringent environmental laws by government bodies and technological breakthrough. EV technology is emerging day by day. Biggest challenge in front of OEM is the phase shift from ICE to EV. OEM need to decide on glide path for test rig development for this change to support ICE & EV powertrain validation to deliver reliable product to their customers. In EV development, major focus is on investment for battery development. Hence, for the Motor and Gearbox validation balanced approach is to upgrade existing ICE test bench for the EV with minimum effort and cost. This paper provides details on need and approach required to make the ICE test bench capable for EV powertrain validation. Proposed methodology helps to support both type of powertrain and have maximum utilization of the test bench.
Technical Paper

Automation of PID Calibration for Close Loop Control System in an Electric Vehicle to Achieve Objective Driveability Performance

2024-01-16
2024-26-0332
This paper introduces a novel approach to automate PID calibration for closed-loop control systems and the creep control function in an electric vehicle. Through a comprehensive literature survey, it is found that this method is the first of its kind to be applied in the field of automated electric vehicle calibration for Creep function. The proposed approach utilizes a systematic methodology that automatically tunes the PID parameters based on predefined performance criteria, including energy consumption and jerk. To implement this methodology, the ETAS INCA FLOW software, which provides guided calibration methods for in-vehicle testing & calibration, is employed. The calibration process is performed on a real-time electric vehicle platform to validate the effectiveness of the proposed approach. The results of this study showcases the advantages of automated PID calibration for closed-loop control systems and creep control function in small commercial electric vehicle.
Technical Paper

Battery Lifetime & Capacity Fade Prediction for Electric Vehicles Using Coupled Electro-Thermal Simulation Methodology

2023-09-14
2023-28-0003
Global concerns over availability and environmental impact of conventional fuels in recent years have resulted in evolution of Electric Vehicles. Research and development focus has shifted towards one of its main components, Lithium-ion battery. Development of high performing, long lasting batteries within challenging timelines is the need of the industry. Lithium-ion batteries undergo “battery ageing”, limiting its energy storage and power output, affecting the EV performance, cost & life span. It is critical to be able to predict the rate of battery ageing & the impact of different environmental conditions on battery lifetime/capacity. Conventionally, extensive physical vehicle level testing is carried out on batteries to map the battery capacity in various conditions. This is a lengthy & expensive process affecting the product development cycle, paving the way for an alternative process.
Journal Article

Application of Machine Learning Technique for Development of Indirect Tire Pressure Monitoring System

2021-09-22
2021-26-0016
Tire inflation pressure has a significant impact over vehicle driving dynamics, fuel consumption as well as tire life. Therefore, continuous monitoring of tire pressure becomes imperative for ride comfort, safety and optimum vehicle handling performance. Two types of tire pressure monitoring systems (TPMS) used by vehicles are - direct and indirect TPMS. Direct systems deploy pressure sensors at each wheel and directly send pressure value to the vehicle Controller Area Network (CAN). Indirect sensors on the other hand use the information from already existing sensors and some physics-based equations to predict the value of tire pressure. Direct TPMS tend to be more accurate but have higher cost of installation while indirect TPMS comes with a minimum cost but compromised accuracy. A digital proof-of-concept study for indirect TPMS development of a non-ESP vehicle based on machine learning (ML) technique is elaborated in this paper.
Technical Paper

Development of Hydrogen Fuel Cell Bus Technology for Urban Transport in India

2019-01-09
2019-26-0092
Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology is considered for automotive applications due to rapid start up, energy efficiency, high power density and less maintenance. In line with National Hydrogen Energy Roadmap of Govt. of India that aims to develop and demonstrate hydrogen powered IC engine and fuel cell based vehicle. TATA Motors Ltd. has designed, developed and successfully demonstrated “Low Floor Hydrogen Fuel Cell Bus” which comprises of integrated fuel cell power system, hydrogen storage and dispensing system. The fuel cell power system, converts the stored chemical energy in the hydrogen to DC electrical energy. The power generated is regulated and used for powering the traction motor. The development of fuel cell bus consists of five stages: Powertrain sizing as per vehicle performance targets, fuel cell stack selection and balance of plant design and development, bus integration, hydrogen refueling infrastructure creation and testing of fuel cell bus.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

Hill Start Assistance Developed for Buses Equipped with AMT

2016-04-05
2016-01-1111
The AMT (Automated Manual Transmission) has attracted increasing interest of automotive researches, because it has some advantages of both MT (Manual Transmission) and AT (Automatic Transmission), such as low cost, high efficiency, easy to use and good comfort. The hill-start assistance is an important feature of AMT. The vehicle will move backward, start with jerk, or cause engine stalling if failed on the slope road. For manual transmission, hill-start depends on the driver's skills to coordinate with the brake, clutch and throttle pedal to achieve a smooth start. However, with the AMT, clutch pedal is removed and therefore, driver can’t perceive the clutch position, making it difficult to hill-start with AMT without hill-start control strategy. This paper discussed about the hill start control strategy and its functioning.
Technical Paper

Parametric Study of Hub Cum Brake Drum for Optimum Design Performance

2015-01-14
2015-26-0079
Brake drum is an important component in automotive, which is a link between axle and wheel. It performance is of utmost importance as it is related to the safety of the car as well to the passengers. Many design parameters are taken into consideration while designing the brake drum. The sensitivity of these parameters is studied for optimum design of brake drum. The critical parameters in terms of reliability, safety & durability could be the cross section, thickness of hub, interference & surface roughness between bearing and hub, wheel loading, heat generation on drum, manufacturing and assembly process. The brake drum design is derived by considering these parameters. Hence the sensitivity of these parameters is studied both virtually & physically, in detail. The optimum value of each parameter could be chosen complying each other's values.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
X