Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Redundant Sensor-Based Perception Sensor Reliability Estimation from Field Tests without Reference Truth

2023-11-08
2023-01-5078
The introduction of autonomous vehicles has gained significant attention due to its potential to revolutionize mobility and safety. A critical aspect underpinning the functionality of these autonomous vehicles is their sensor perception system. Demonstrating the reliability of the environment perception sensors and sensor fusion algorithms is, therefore, a necessary step in the development of automated vehicles. Field tests offer testing conditions that come closest to the environment of an automated vehicle in the future. However, a significant challenge in field tests is to obtain a reference truth of the surrounding environment. Here, we propose a pipeline to assess the sensor reliabilities without the need for a reference truth. The pipeline uses a model to estimate the reliability of redundant sensors. To do this, it relies on a binary representation of the surrounding area, which indicates either the presence or absence of an object.
Technical Paper

Trailer Electrification – A HIL Approach for MPC Powertrain Control to Ensure Driver Safety in Micromobility

2023-08-28
2023-24-0180
Bicycle-drawn cargo trailers with an electric drive to enable the transportation of high cargo loads are used as part of the last-mile logistics. Depending on the load, the total mass of a trailer can vary between approx. 50 and 250 kg, potentially more than the mass of the towing bicycle. This can result in major changes in acceleration and braking behavior of the overall system. While existing systems are designed primarily to provide sufficient power, improvements are needed in the powertrain control system in terms of driver safety and comfort. Hence, we propose a novel prototype that allows measurement of the tensile force in the drawbar which can subsequently be used to design a superior control system. In this context, a sinusoidal force input from the cyclist to the trailer according to the cadence of the cyclist is observed. The novelty of this research is to analyze whether torque impulses of the cyclist can be reduced with the help of Model Predictive Control (MPC).
Technical Paper

Comparison of Deep Learning Architectures for Dimensionality Reduction of 3D Flow Fields of a Racing Car

2023-04-11
2023-01-0862
In motorsports, aerodynamic development processes target to achieve gains in performance. This requires a comprehensive understanding of the prevailing aerodynamics and the capability of analysing large quantities of numerical data. However, manual analysis of a significant amount of Computational Fluid Dynamics (CFD) data is time consuming and complex. The motivation is to optimize the aerodynamic analysis workflow with the use of deep learning architectures. In this research, variants of 3D deep learning models (3D-DL) such as Convolutional Autoencoder (CAE) and U-Net frameworks are applied to flow fields obtained from Reynolds Averaged Navier Stokes (RANS) simulations to transform the high-dimensional CFD domain into a low-dimensional embedding. Consequently, model order reduction enables the identification of inherent flow structures represented by the latent space of the models.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 1: Research on Deposit Formation Mechanism)

2023-04-11
2023-01-0410
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. As CO2 emission has been reduced through electrification such as hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV), internal combustion engines (ICEs) equipped in those powertrain systems are still necessary for the foreseeable future, and continuous efforts to improve fuel efficiency are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been researched as a next generation of turbocharged gasoline engines. Further utilization of turbochargers is expected. Compared with turbocharged downsized gasoline engines available in the current market, much higher boost pressure must be utilized to realize the super lean-burn engines. As a result, compressor housing temperature will be very high compared with the current market one.
Journal Article

A New Generation Automotive Tool Access Architecture for Remote in-Field Diagnosis

2023-04-11
2023-01-0848
Software complexity of vehicles is constantly growing especially with additional autonomous driving features being introduced. This increases the risk for bugs in the system, when the car is delivered. According to a car manufacturer, more than 90% of availability problems corresponding to Electronic Control Unit (ECU) functionality are either caused by software bugs or they can be resolved by applying software updates to overcome hardware issues. The main concern are sporadic errors which are not caught during the development phase since their trigger condition is too unlikely to occur or is not covered by the tests. For such systems, there is a need of safe and secure infield diagnosis. In this paper we present a tool software architecture with remote access, which facilitates standard read/write access, an efficient channel interface for communication and file I/O, and continuous trace.
Technical Paper

Review on Uncertainty Estimation in Deep-Learning-Based Environment Perception of Intelligent Vehicles

2022-06-28
2022-01-7026
Deep neural network models have been widely used for environment perception of intelligent vehicles. However, due to models’ innate probabilistic property, the lack of transparency, and sensitivity to data, perception results have inevitable uncertainties. To compensate for the weakness of probabilistic models, many pieces of research have been proposed to analyze and quantify such uncertainties. For safety-critical intelligent vehicles, the uncertainty analysis of data and models for environment perception is especially important. Uncertainty estimation can be a way to quantify the risk of environment perception. In this regard, it is essential to deliver a comprehensive survey. This work presents a comprehensive overview of uncertainty estimation in deep neural networks for environment perception of intelligent vehicles.
Technical Paper

Investigation of the Drag Losses of Wet Clutches at Dip Lubrication

2022-03-29
2022-01-0650
Wet running multi-plate clutches and brakes are important components of modern automotive and industrial powertrains. In the open stage, drag losses occur due to fluid shearing. This can subsequently lead to a perceptible reduction in the overall drivetrain efficiency. Injection or dip lubrication is used, depending on the application and the requirements. For the former a deep fundamental understanding already exists, whereas up until now the latter has not been extensively investigated. This contribution gives a detailed insight into the experimental research of the drag losses of wet running multi-plate clutches at dip lubrication. In a base study, the flow conditions and origins of the drag torque generation were investigated. Built on this, the effects of operating and geometry parameters, such as oil viscosity and level, clearance, groove design, plate size and number of gaps on the drag loss characteristic, were determined based on full factorial testing.
Technical Paper

Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain

2021-09-21
2021-01-1229
To minimize the impact of global warming worldwide, net greenhouse-gas (GHG) emissions have to be reduced. The transportation sector is one main contributor to overall greenhouse gas emissions due to the fact that most of the current propulsion systems rely on fossil fuels. The gasoline engine powertrain is the most used system for passenger vehicles in the EU and worldwide. Besides emitting GHG, gasoline driven cars emit harmful pollutants, which can cause health issues for humans. Hybrid powertrains provide an available short-term solution to reduce fuel consumption and thus overall emissions. Therefore, an overview of the currently available technology and methodology of hybrid cars is provided in this paper as well as an overview of the performance of current HEV cars in real world testing. From the testing, it can be concluded that despite reducing harmful emissions, hybrid vehicles still emit pollutants and GHG when fueled with conventional gasoline.
Journal Article

Reducing Vehicle Glass Sensitivity to Turbulent Pressure

2021-08-31
2021-01-1125
Vehicle interior wind noise is typically managed through the overall exterior geometry of the vehicle, mirror shape and mounting location, sealing features and glass thickness and damping. Prior research has distinguished between contribution of fluctuating pressure due to air turbulence as compared to acoustic pressure to a passenger vehicles exterior at highway speeds. Because of the large difference in propagation speed between turbulent and acoustic pressure for on-road passenger vehicles, the structural response of the glass to turbulent versus acoustic pressure is not the same. The acoustic coincidence frequency of door glass is typically in the 2-3 kHz range. Turbulent coincidence frequency is much lower, and the effective transmission loss (TL) of the glass depends on the mix of turbulent and acoustic pressure on the exterior surface of the glass.
Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Validating an Approach to Assess Sensor Perception Reliabilities Without Ground Truth

2021-04-06
2021-01-0080
A reliable environment perception is a requirement for safe automated driving. For evaluating and demonstrating the reliability of the vehicle’s environment perception, field tests offer testing conditions that come closest to the vehicle’s driving environment. However, establishing a reference ground truth in field tests is time-consuming. This motivates the development of a procedure for learning the vehicle’s perception reliability from fleet data without the need for a ground truth, which would allow learning the perception reliability from fleet data. In Berk et al. (2019), a method based on Bayesian inference to determine the perception reliability of individual sensors without the need for a ground truth was proposed. The model utilizes the redundancy of sensors to learn the sensor’s perception reliability. The method was tested with simulated data.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

System Architecture Design Suitable for Automated Driving Vehicle: Hardware Configuration and Software Architecture Design

2021-04-06
2021-01-0073
Our L2-automated driving system enabling a driver to take his/her hands off from the steering wheel is self-operating on a highway, allowing the vehicle to automatically change lanes and overtake slow-speed leading vehicles. It includes an OTA function, which can extend the ODD after the market launch. To realize these features in reasonably safer and more reliable ways, system architecture must be designed well under hardware and software implementation constraints. One such major constraint is the system must be designed to make the most out of the existing sensor configuration on the vehicle, where five peripheral radars and a front camera for ADAS as well as panoramic-view and rear-view cameras for monitoring are available. In addition, four LiDARs and a telephoto camera are newly adopted for ADS. Another constraint is the system must consist of reliable redundant components for fail-safe operation.
Technical Paper

Experimental and Numerical Investigations on Time-Resolved Flow Field Data of a Full-Scale Open-Jet Automotive Wind Tunnel

2021-04-06
2021-01-0939
One main goal of the automotive industry is to reduce the aerodynamic drag of passenger vehicles. Therefore, a deeper understanding of the flow field is necessary. Time-resolved data of the flow field is required to get an insight into the complex unsteady flow phenomena around passenger vehicles. This data helps to understand the temporal development of wake structures and enables the analysis of the formation of vortical structures. Numerical simulations are an efficient method to analyze the time-resolved data of the unsteady flow field. The analysis of the steady and unsteady numerical data is only relevant for aerodynamic developments in the wind tunnel, if the predicted temporal evolving structures of a passenger vehicle’s simulated flow field correspond to the structures of the flow field in the wind tunnel. In this study, time-resolved measurements of the empty wind tunnel and a notchback passenger vehicle in the wind tunnel are conducted.
Technical Paper

Time Domain Full Vehicle Interior Noise Calculation from Component Level Data by Machine Learning

2020-09-30
2020-01-1564
Computational models directly derived from data gained increased interest in recent years. Data-driven approaches have brought breakthroughs in different research areas such as image-, video- and audio-processing. Often denoted as Machine Learning (ML), today these approaches are not widely applied in the field of vehicle Noise, Vibration and Harshness (NVH). Works combining ML and NVH mainly discuss the topic with respect to psychoacoustics, traffic noise, structural health monitoring and as improvement to existing numerical simulation methods. Vehicle interior noise is a major quality criterion for today’s automotive customers. To estimate noise levels early in the development process, deterministic system descriptions are created by utilizing time-consuming measurement techniques. This paper examines whether pattern-recognizing algorithms are suitable to conduct the prediction process for a steering system.
Technical Paper

Volume of Fluid vs. Cavitation CFD-Models to Calculate Drag Torque in Multi-Plate Clutches

2020-04-14
2020-01-0495
Wet-running multi-plate clutches and brakes are important components of modern powershift gearboxes and industrial powertrains. In the open stage, drag losses occur due to fluid shear. The identification of drag losses is possible by experiment or CFD-simulation. For the calculation of the complex fluid flow of an open clutch, CFD-approaches such as the volume of fluid (vof) method or the Singhal cavitation model are applicable. Every method has its own specific characteristics. This contribution sets up CFD-calculation models for different clutches with diverse groove designs. We present results of calculations in various operating conditions obtained from the Singhal cavitation model and the vof method. The usage of modern commercial CFD-Tools (Simerics MP+) results in short calculation times.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Effects of the Feature Extraction from Road Surface Image for Road Induced Noise Prediction Using Artificial Intelligence

2019-06-05
2019-01-1565
Next generation vehicles driven by motor such as electric vehicles and fuel cell vehicles have no engine noise. Therefore the balance of interior noise is different from the vehicles driven by conventional combustion engine. In particular, road induced noise tends to be conspicuous in the low to middle vehicle speed range, therefore, technological development to reduce it is important task. The purpose of this research is to predict the road induced noise from the signals of sensors adopted for automatic driving for utilizing the prediction result as a reference signal to reduce road induced noise by active noise control (ANC). Using the monocular camera which is one of the simplest image sensors, the road induced noise is predicted from the road surface image ahead of the vehicle by machine learning.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
X