Refine Your Search

Topic

Author

Search Results

Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems

2023-09-05
2023-01-1504
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document.
Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Journal Article

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2011-10-18
2011-01-2576
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a “single-truth” architectural framework. The SAVI approach of “Integrate, then Build” provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a “single-truth” reference architectural model.
Technical Paper

A Reduced-Order Enclosure Radiation Modeling Technique for Aircraft Actuators

2010-11-02
2010-01-1741
Modern aircraft are aerodynamically designed at the edge of flight stability and therefore require high-response-rate flight control surfaces to maintain flight safety. In addition, to minimize weight and eliminate aircraft thermal cooling requirements, the actuator systems have increased power-density and utilize high-temperature components. This coupled with the wide operating temperature regimes experienced over a mission profile may result in detrimental performance of the actuator systems. Understanding the performance capabilities and power draw requirements as a function of temperature is essential in properly sizing and optimizing an aircraft platform. Under the Air Force Research Laboratory's (AFRL's) Integrated Vehicle and Energy Technology (INVENT) Program, detailed models of high performance electromechanical actuators (HPEAS) were developed and include temperature dependent effects in the electrical and mechanical actuator components.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Journal Article

Role of Power Distribution System Tests in Final Assembly of a Military Derivative Airplane

2009-11-10
2009-01-3121
Boeing has contracts for military application of twin engine airplanes generically identified in this paper as the MX airplane. Unlike previous derivatives, the MX airplanes are produced with a streamlined manufacturing process to improve cost and schedule performance. The final assembly of each MX airplane includes a series of integration tests, called factory functional tests (FFTs), which are modified from those of typical commercial versions and verify correctness of equipment installation and basic functionalities. Two airplanes have been through the production line resulting in a number of FFT lessons learned. Addressed are the power distribution lessons learned: 1) the expanded coverage of the basic automated power-on generation system test, 2) the need for a manual wire continuity test, 3) salient features of the power distribution tests, and 4) keys to make first pass power distribution test smooth and successful.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

Multi-Fuel Reforming and Fuel Cell Systems for Aviation Applications: The Role of Bio-Diesel and its Synergy with Global Interests

2008-11-11
2008-01-2855
The rising cost of fuel prices, in part due to the perception of diminishing supplies of common fuelstocks, as well as worldwide attention to reducing emissions has pushed the need to explore the use of many alternative fuels. The aviation industry has been under recent scrutiny due to its contribution of greenhouse gas emissions (GHG). Current contribution of GHG by airplanes is relatively small, 2% of the total GHG emissions, but world air traffic is anticipated to continue to grow and may have a corresponding increase in emissions. Both commercial and government aviation sectors have efforts to seek ways to lower fuel consumption through efficiency and reduce emissions. Development of a suitable alternative fuel that can be seamlessly used in place of conventional jet fuel is desirable. A strategy to enable this goal is to be fuel flexible; utilizing an array of fuels from bio-diesel to current jet fuel.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Development of Portable and Flexible Track Positioning System for Aircraft Manufacturing Processes

2007-09-17
2007-01-3781
The Boeing Company has recently developed a portable positioning system based upon its patented flexible vacuum track technology, in support of its commitment to lean manufacturing techniques. The positioning system, referred to as Mini Flex Track, was initially developed as an inexpensive drilling system that minimizes machine setup time, does not require extensive operator training due to its simple user interface, is general purpose enough to be used in varying airplane applications, and meets strict accuracy requirements for aircraft manufacturing. The system consists of a variable length vacuum track that conforms to a range of contours, a two-axis numerically-controlled positioning carriage that controls machine motion, an additional rail perpendicular to the vacuum rail that provides transverse motion, and an end effector that can perform various tasks.
Technical Paper

Keep the User in Mind: Operational Considerations for Securing Airborne Networks

2007-09-17
2007-01-3785
Security is a serious concern for all Internet users, and all the more so if the implications of security failure can potentially affect safety of flight or the public's perception of air travel. However, when designing networked aircraft and onboard systems, technical security features are only one aspect of the implementation that must be addressed. Given the unique operational, support, and regulatory environment of commercial air transports, careful consideration must also be given to both design and operational requirements in order to develop an aircraft that can be safely operated and maintained within the constraints of the existing infrastructure and personnel available. This paper addresses the unique Operational Considerations for Securing Airborne Networks in commercial air transport aircraft.
Technical Paper

Verification of Supply Chain Quality for Perishable Tools

2007-09-17
2007-01-3813
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
Technical Paper

Designing Airplane Cabin Noise Treatment Packages using Statistical Energy Analysis

2007-05-15
2007-01-2316
Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

2007-01-17
2007-01-3888
The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

Development and Deployment of Orbital Drilling at Boeing

2006-09-12
2006-01-3152
Orbital hole drilling technology has shown a great deal of promise for cost savings on applications in the aerospace industry where burr free, high quality holes are a necessity. This presentation will show some of the basic research on orbital drilling development Boeing is doing with the Advanced Manufacturing Research Center at Sheffield University and the deployment of the technology into production programs within The Boeing Company.
Technical Paper

ISS: On-Board ECLSS Maintenance Activities and Launch Logistics

2006-07-17
2006-01-2062
The ISS U. S. ECLSS contains replaceable component designs to facilitate maintenance. A replaceable component is referred to as an Orbital Replacement Unit (ORU). Total U. S. ECLSS maintenance events that have occurred over the five years (2001-2005) of operations are summarized. A more detailed description is provided for the ECLSS Remove and Replace (R&R) maintenance activities that have occurred during the last two years and the associated logistics that supported these activities. Maintenance activities have replaced failed or degraded ORU's by Corrective Maintenance (CM) and replaced spent expendable ORU's by Preventative Maintenance (PM). Corrective maintenance is performed only when necessary and often on relatively short notice. Preventative maintenance is planned in advance and is normally performed at a specified ORU service time. The paper also describes activities and successful efforts to increase the expendable ORU service life.
Technical Paper

Simulation Study of a Commercial Transport Airplane During Stall and Post-Stall Flight

2004-11-02
2004-01-3100
As part of NASA’s Aviation Safety and Security Program, a simulation study of a twin-jet transport aircraft crew training simulation was conducted to address fidelity for upset or loss-of-control flight conditions. Piloted simulation studies were conducted to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted in a flaps-up configuration and covered the approach-to-stall, stall and post-stall flight regimes. Qualitative pilot comments and preliminary comparison with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the significant unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified.
Technical Paper

A Robust Method of Countersink Inspection Using Machine Vision

2004-09-21
2004-01-2820
An automated system drills the outer moldline holes on a military aircraft wing. Currently, the operator manually checks countersink diameter every ten holes as a process quality check. The manual method of countersink inspection (using a countersink gauge with a dial readout) is prone to errors both in measurement and transcription, and is time consuming since the operator must stop the automated equipment before measuring the hole. Machine vision provides a fast, non-contact method for measuring countersink diameter, however, data from machine vision systems is frequently corrupted by non-gaussian noise which causes traditional model fitting methods, such as least squares, to fail miserably. We present a solution for circle measurement using a statistically robust fitting technique that does an exceptional job of identifying the countersink even in the presence of large amounts of structured and non-structured noise such as tear-out, scratches, surface defects, salt-and-pepper, etc.
X