Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Separation of Non-Metallic Contaminants in Fluxless Melting and Refining of Magnesium Alloys

2000-03-06
2000-01-1125
Recent growth in automotive applications of magnesium die cast alloys has made the refining and recycling of magnesium scrap a key issue for the automotive and magnesium industries, if growth is to continue. Today, with only a few exceptions, commercially refined and recycled alloy is produced using a variety of flux-based processes. However, fluxless refining, has been the focus of growing interest, particularly for the in-house refining of scrap by the die cast producers. This paper summarizes the results of a study conducted to better understand the behavior of non-metallic contaminants in scrap melts and the requirements for their separation, using argon sparging. Brightness measurements were used to experimentally determine the distribution of non-metallic contaminants within scrap melts both before and after argon treatment.
Technical Paper

The Origin of Microporosity in Magnesium Alloy AZ91

1994-03-01
940776
The persistent occurrence of microporosity defects in AZ91 castings has made it difficult to consistently produce sound parts. Earlier work established that dissolved hydrogen gas causes microporosity defects in AZ91; however, the exact role of hydrogen in the nucleation and growth of microporosity was not determined. In this paper, the behavoir of dissolved hydrogen gas in elemental magnesium, AZ91 alloy, and liquid binary Mg/Al alloys was studied. The results show that during the last stages of solidification, hydrogen gas is rejected from the Mg17Al12 intermetallic compound to assist in the nucleation and/or growth of microporosity.
Technical Paper

Interdependence of Hydrogen and Microporosity in Magnesium Alloy AZ91

1993-03-01
930754
The relationship between hydrogen gas and microporosity in magnesium alloy AZ91 was quantified, refuting the belief that hydrogen levels less than the maximum solid solubility are of no detriment. Sand castings were made from melts containing measured levels of hydrogen gas, and the amount of porosity was determined by density measurements. At concentrations below the maximum solid solubility, it was established that the amount of microporosity is directly proportional to the gas content. This supports the premise that dissolved hydrogen gas provides nucleation sites for microporosity, and that it is useful to remove all gas to achieve porosity-free cast parts.
Technical Paper

A Recyclability Evaluation of Automotive Interior Components

1993-03-01
931029
The American public's desire to recycle and the predictions of future recycle mandates are motivating automotive OEMs and plastic suppliers to address the recycling of plastic materials. As a result, the OEMs and plastic industry groups have asked resin suppliers, automotive dismantlers and reprocessors to assist them in studying and developing solutions for the recovery of post-consumer automotive plastics and recycling those materials back into automotive applications. The Dow Chemical Company has been a participant in plastic industry sponsored projects and has initiated numerous research and development activities involving the recycling of automotive thermoplastic and thermoset materials, as well.
Technical Paper

Acoustical Evaluation of Automotive Headliner Composites with Various Adhesive Systems

1992-02-01
920501
Adhesive materials are required to bond cover fabrics to most molded interior headliner substrates. Several thermoplastic adhesive films are qualified and used at U.S. and Japanese OEM's. These adhesive films offer benefits such as convenience, cost effectiveness, excellent adhesive performance and process efficiency while reducing concerns of emissions and hazardous waste handling compared to prior bonding methods. The automotive headliner part is a multifunctional component of the vehicle's interior trim. One of the main headliner functions is to reduce the interior cabin noise. Various adhesive materials are used in a lamination process to form a composite headliner. The purpose of this study was to compare the effects of this lamination process and various alternative adhesive materials on the overall acoustical performance of the headliner composite. Various headliner samples were fabricated under controlled process conditions and tested by an independent acoustics testing lab.
Technical Paper

Magnesium Refining: A Fluxless Alternative

1992-02-01
920071
A method for refining magnesium scrap which produces consistent, high quality magnesium metal has been developed. High quality magnesium metal is defined in this paper as metal which has heavy metal contaminants controlled within high-purity ASTM chemical specification, and is relatively free of internal impurities such as non-metallic inclusions (oxides and flux) and dissolved gas. The refining process utilizes a protective gas atmosphere, inert gas sparging and filtration techniques, rather than salt based fluxes, to remove both non-metallic inclusions and dissolved gases. Experimentation results of this refining process indicate magnesium scrap can be remelted and refined to a quality equal to or better than virgin ingot, without the introduction of salt based fluxes or a large capital investment.
Technical Paper

Evaluation of Thermoplastic Materials for Automotive Interior Trim Applications

1991-02-01
910519
Material and design engineers are constantly faced with the task of selecting the best thermoplastic material for interior trim applications. The purpose of this paper is to relate the results of physical property testing and part evaluation to their plastics selection process to allow a more optimized material choice for automotive interior applications. The thermoplastics that were evaluated in this study are the two largest volume plastics used today in interior trim, ABS (acrylonitrile, butadiene, styrene terpolymer) and polypropylene.
Technical Paper

Thermoplastic Adhesive Films for Automotive Interior Trim Applications

1991-02-01
910521
Joining dissimilar parts in automotive interior trim applications has been accomplished by utilizing mechanical fasteners, organic and water based adhesives, and more recently, thermoplastic polymers. Recent trends towards reducing solvent emissions and waste management problems, improving the consistency of adhesive application, integrating parts, lowering parts fabrication costs, and designing a specified bond level has increased the use of thermoplastic adhesive films as bonding agents in several applications. Initial efforts began over fifteen years ago with Dow Adhesive Films (DAF) being designed for bonding interior trim fabrics to various substrates. Films have subsequently been designed to improve performance of many interior trim parts in many ways such as: improving water resistance, allowing the part to be molded before installation, imparting a slip surface to a part, and supporting a non-woven fabric.
Technical Paper

Design and Application of Thermoplastic Adhesive Films for Headliner Composites

1991-02-01
910781
The construction of most automotive interior headliners requires an adhesive material to bond polyurethane foam-backed fabric to a molded headliner shell. More than ten years ago, The Dow Chemical Company qualified and began supplying a thermoplastic adhesive polymer film for headliner applications which replaced wet adhesive systems at several fabricators. DAF 899 adhesive film has gained acceptance in the industry due to excellent performance, convenience, and cost effectiveness without additional waste handling or volatile organic emission concerns. Recent advancements in headliner design such as additional recessed areas with more demanding contours, new substrate materials and the desire for more efficient operations created an opportunity to design improved adhesive films to meet the emerging industry demands.
Technical Paper

New High Heat Stable, Low Gloss. Automotive Interior Trim Resins Having Excellent Processability

1989-02-01
890592
A new family of high heat stable, few gloss ABS resins has been developed specifically to offer the automotive industry improved performance in molded interior trim parts. The new resins offer excellent fabrication and property performance similar to that of standard-heat low gloss ABS resins. Advantages over current high heat ABS resins include improved injection moldability, greater resistance to heat warping and to U.V. degradation, improved color stability, improved toughness, and consequent good finished part economics while maintaining equivalent heat resistance. Physical property and testing-evaluation data are provided.
Technical Paper

Compact, All-Solid Gas Generators

1972-02-01
720417
Gas generators for filling auto air cushions have been developed in several compact sizes and configurations. All-solid chemical-generating compositions have been developed to give nearly pure nitrogen gas. Other compositions developed give mainly carbon dioxide. Gas cushions ranging in size from 1-12 ft3 have been inflated. Deployment time, bag temperature, and sound level are within safe limits. Toxicity tests have been performed on dogs without harmful effects being observed.
X