Refine Your Search

Topic

Author

Search Results

Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

Energy-Optimal Allocation of a Heterogeneous Delivery Fleet in a Dynamic Network of Distribution and Fulfillment Centers

2024-04-09
2024-01-2448
This paper presents an energy-optimal plan for the allocation of a heterogeneous fleet of delivery vehicles in a dynamic network of multiple distribution centers and fulfillment centers. Each distribution center with a heterogeneous fleet of delivery vehicles is considered as a hub connected with the fulfillment centers through the routes as spokes. The goal is to minimize the overall energy consumption of the fleet while meeting the demand of each of the fulfillment centers. To achieve this goal, the problem is divided into two sub-problems that are solved in a hierarchical way. Firstly, for each spoke, the optimal number of vehicles to be allocated from each hub is determined. Secondly, given the number of allocated delivery vehicles from a hub for each spoke, the optimal selection of vehicle type from the available heterogeneous fleet at the hub is done for each of spokes based on the energy requirement and the energy efficiency of the spoke under consideration.
Technical Paper

Deep Reinforcement Learning Based Collision Avoidance of Automated Driving Agent

2024-04-09
2024-01-2556
Automated driving has become a very promising research direction with many successful deployments and the potential to reduce car accidents caused by human error. Automated driving requires automated path planning and tracking with the ability to avoid collisions as its fundamental requirement. Thus, plenty of research has been performed to achieve safe and time efficient path planning and to develop reliable collision avoidance algorithms. This paper uses a data-driven approach to solve the abovementioned fundamental requirement. Consequently, the aim of this paper is to develop Deep Reinforcement Learning (DRL) training pipelines which train end-to-end automated driving agents by utilizing raw sensor data. The raw sensor data is obtained from the Carla autonomous vehicle simulation environment here. The proposed automated driving agent learns how to follow a pre-defined path with reasonable speed automatically.
Technical Paper

Development of a Dynamic Nonlinear Finite Element Model of the Large Omnidirectional Child Crash Test Dummy

2024-04-09
2024-01-2509
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model.
Technical Paper

Data-Driven Estimation of Coastdown Road Load

2024-04-09
2024-01-2276
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer.
Technical Paper

Whirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings

2022-03-29
2022-01-0607
Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted.
Technical Paper

The Mechanism of Spur Gear Tooth Profile Deformation Due to Interference-Fit Assembly and the Resultant Effects on Transmission Error, Bending Stress, and Tip Diameter and Its Sensitivity to Gear Geometry

2022-03-29
2022-01-0608
Gear profile deviation is the difference in gear tooth profile from the ideal involute geometry. There are many causes that result in the deviation. Deflection under load, manufacturing, and thermal effects are some of the well-known causes that have been reported to cause deviation of the gear tooth profile. The profile deviation caused by gear tooth profile deformation due to interference-fit assembly has not been discussed previously. Engine timing gear trains, transmission gearboxes, and wind turbine gearboxes are known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the mechanism of tooth profile deformation due to the interference-fit assembly in gear trains. A new analytical method to calculate the profile slope deviation change due to interference-assembly of parallel axis spur gears is presented.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Ford DrivAer Test Case Summary

2022-03-29
2022-01-0886
The 2nd Automotive CFD Prediction workshop (AutoCFD2) was organized to improve the state-of-the-art in automotive aerodynamic prediction. It is the mission of the workshop organizing committee to drive the development and validation of enhanced CFD methods by establishing publicly available standard test cases for which high quality on- and off-body wind tunnel test data is available. This paper reports on the AutoCFD2 workshop for the Ford DrivAer test case. Since its introduction, the DrivAer quickly became the quasi-standard for CFD method development and correlation. The Ford DrivAer has been chosen due to the proven, high-quality experimental data available, which includes integral aerodynamic forces, 209 surface pressures, 11 velocity profiles and 4 flow field planes. For the workshop, the notchback version of the DrivAer in a closed cooling, static floor test condition has been selected.
Technical Paper

Customized Co-Simulation Environment for Autonomous Driving Algorithm Development and Evaluation

2021-04-06
2021-01-0111
Deployment of autonomous vehicles requires an extensive evaluation of developed control, perception, and localization algorithms. Therefore, increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LiDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible.
Technical Paper

Simulation Framework for Testing Autonomous Vehicles in a School for the Blind Campus

2021-04-06
2021-01-0118
With the advent of increasing autonomous vehicles on public roads, the safety of vulnerable road users such as pedestrians, cyclists, etc. has never been more important. These especially include Blind or Visually Impaired (BVI) pedestrians who face difficulty in making confident decisions in road crossings without the help of accessible pedestrian signals (APS). This paper addresses some of the safety measures that can be taken to improve and assess the safety of BVI pedestrians in a controlled environment like a BVI school campus where autonomous vehicles are operated. The majority of research on autonomous vehicle safety does not consider the edge cases of encounters with BVI pedestrians. Based on this motivation, requirements and characteristics of Non-BVI and BVI pedestrians have been stated along with the motion models used to predict their future movements. Existing tools based on Bayesian multi-model filters were used for pedestrian tracking and motion predictions.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Predicting Desired Temporal Waypoints from Camera and Route Planner Images using End-To-Mid Imitation Learning

2021-04-06
2021-01-0088
This study is focused on exploring the possibilities of using camera and route planner images for autonomous driving in an end-to-mid learning fashion. The overall idea is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. We replicated this notion by using end-to-mid imitation learning. In particular, we imitated human driving behavior by using camera and route planner images for predicting the desired waypoints and by using a dedicated control to follow those predicted waypoints. Besides, this work also places emphasis on using minimal and cheaper sensors such as camera and basic map for autonomous driving rather than expensive sensors such Lidar or HD Maps as we humans do not use such sophisticated sensors for driving.
Technical Paper

Investigating Combined Thoracic Loading Using the Elderly Female Dummy (EFD)

2020-03-31
2019-22-0017
The Elderly Female Dummy (EFD) is an omni-directional ATD developed to represent a vulnerable population. The EFD it is able to be 3D printed and quickly altered to meet design requirements. A recent side impact sled test series suggested that small, elderly females may be at risk of thoracic injuries in side impact crashes due to combined loading from the belt pre-tensioner and side airbag. The EFD was altered to add four IR-TRACCs to the thoracic region to allow both x-axis and y-axis displacement to be evaluated in a similar test. While the IR-TRACCs did record the displacement due to combined loading, the rate of displacement and timing of the peak displacements did not match external chestband outputs. The next step for the EFD is to revise the locations of IRTRACCs in the thorax and begin component testing in lateral and frontal directions to improve thoracic biofidelity.
Technical Paper

Utilization of ADAS for Improving Performance of Coasting in Neutral

2018-04-03
2018-01-0603
It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than Deceleration Fuel Cut-Off (DFCO) - which exists in all current vehicle powertrain controllers - can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

2018-04-03
2018-01-0630
Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
Technical Paper

Localization and Perception for Control and Decision Making of a Low Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-04-03
2018-01-1182
Future SAE Level 4 and Level 5 autonomous vehicles will require novel applications of localization, perception, control and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This paper concentrates on low speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of campus as an initial autonomous vehicle (AV) pilot test route for the deployment of low speed autonomous shuttles. This paper presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Technical Paper

Testing and Validation of a Belted Alternator System for a Post-Transmission Parallel PHEV for the EcoCAR 3 Competition

2017-03-28
2017-01-1263
The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

Effect of Local Stiffness Coupling on the Modes of a Subframe-Bushing System

2013-05-13
2013-01-1904
The elastomeric joints (bushings or mounts) in vehicle structural frames are usually described as uncoupled springs (only with diagonal terms) in large scale system models. The off-diagonal terms of an elastomeric joint have been previously ignored as they are often unknown since their properties cannot be measured in a uniaxial elastomer test system. This paper overcomes this deficiency via a scientific study of a laboratory frame that is designed to maintain a high fidelity with real-world vehicle body subframes in terms of natural modes under free boundaries. The steel beam construction of the laboratory frame, with four elastomeric mounts at the corners, permits the development of a highly accurate, yet simple, beam finite element model. This allows for a correlation study between the experiment and model that helps shed light upon the underlying physical phenomenon.
X