Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Literature Survey of Water Injection Benefits on Boosted Spark Ignited Engines

2017-03-28
2017-01-0658
The automotive industry has been witnessing a major shift towards downsized boosted direct injection engines due to diminishing petroleum reserves and increasingly stringent emission targets. Boosted engines operate at a high mean effective pressure (MEP), resulting in higher in-cylinder pressures and temperatures, effectively leading to increased possibility of abnormal combustion events like knock and pre-ignition. Therefore, the compression ratio and boost pressure in modern engines are restricted, which in-turn limits the engine efficiency and power. To mitigate conditions where the engine is prone to knocking, the engine control system uses spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Several researchers have advocated water injection as an approach to replace or supplement existing knock mitigation techniques.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 1

2016-04-05
2016-01-0183
Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Technical Paper

Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

2000-04-02
2000-01-1601
There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct-injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry.
Technical Paper

NOx Destruction Behavior of Select Materials When Combined with a Non-Thermal Plasma

1999-10-25
1999-01-3640
NOx reduction efficiency under simulated lean burn conditions is examined for a non-thermal plasma in combination with borosilicate glass, alumina, titania, Cu-ZSM-5 and Na-ZSM-5. The non-thermal plasma alone or with a packed bed of borosilicate glass beads converts NO to NO2 and partially oxidizes hydrocarbons. Alumina and Na-ZSM-5 reduce a maximum of 40% and 50% of NOx respectively; however, the energy cost is high for Na- ZSM-5. Cu-ZSM-5 converts less than 20% with a very high energy consumption. The anatase form of titania reduces up to 35% of NOx at a relatively high energy consumption (150J/L) when the catalyst is contained in the plasma region, but does not show any appreciable conversion when placed downstream from the reactor. This phenomenon is explained by photo-activation of anatase in the plasma.
Technical Paper

Relating Subjective Idle Quality to Engine Combustion

1997-02-24
970035
Engine designers need an objective measurement which can be tested on the engine to indicate acceptable idle quality. An experiment was performed to select objective measures based on cylinder pressure data, and two measures were selected. Standard deviation of indicated mean effective pressure (SDimep) is a measure of the statistical instability of combustion. Lowest normalized value (LNV) is a measure of the tendency toward misfire. These two measures are shown for a set of typical engines. The body of data shows the relation of SDimep and LNV to burn duration and timing.
X