Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of an Improved Airbag-Induced Thermal Skin Burn Model

1999-03-01
1999-01-1065
The UMTRI Airbag Skin Burn Model has been improved through laboratory testing and the implementation of a more flexible heat transfer model. A new impinging jet module based on laboratory measurements of heat flux due to high-velocity gas jets has been added, along with an implicit finite-difference skin conduction module. The new model can be used with airbag gas dynamics simulation outputs, or with heat flux data measured in the laboratory, to predict the potential for thermal skin burn due to exposure to airbag exhaust gas.
Technical Paper

Methods for Laboratory Investigation of Airbag-Induced Thermal Skin Burns

1999-03-01
1999-01-1064
Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
Technical Paper

Laboratory Investigations and Mathematical Modeling of Airbag-Induced Skin Burns

1994-11-01
942217
Although driver-side airbag systems provide protection against serious head and chest injuries in frontal impacts, injuries produced by the airbag itself have also been reported. Most of these injuries are relatively minor, and consist primarily of skin abrasions and burns. Previous investigations have addressed the mechanisms of airbag-induced skin abrasion. In the current research, laboratory studies related to the potential for thermal burns due to high-temperature airbag exhaust gas were conducted. A laboratory apparatus was constructed to produce a 10-mm-diameter jet of hot air that was directed onto the leg skin of human volunteers in time-controlled pulses. Skin burns were produced in 70 of 183 exposures conducted using air temperatures ranging from 350 to 550°C, air velocities from 50 to 90 m/s, and exposure durations from 50 to 300 ms.
Technical Paper

The Role of Nitrogen in the Observed Direct Microbial Mutagenic Activity for Diesel Engine Combustion in a Single–Cylinder DI Engine

1982-02-01
820467
This study shows conclusively that some of the direct microbial mutagenic activity of the soluble-organie-fraction from Diesel particulate matter can be attributed to 1-nitropyrene. 1-nitropyrene has been shown to be formed by the nitration of pyrene, and pyrene is one inherent product of the diffusion-controlled-combustion of hycrocarbons that occurs with Diesel engine operation. Nitrogen dioxide, in the presence of water vapor, is shown to be a potential nitrating agent, and this gas can be produced by the high temperature oxidation of the nitrogen contained in the oxidant. These results are based on studies which used a well-documented engine, model fuel, model oxidants, and synthetic lubricant.
Technical Paper

Exhaust Emission Characteristics of a Small 2-Stroke Cycle Spark Ignition Engine

1973-02-01
730159
The 2-stroke cycle engine has not been subject to extensive exhaust emission research because small vehicles which commonly employ 2-stroke cycle engines are not covered by federal emission regulations. This paper reports the results of a 2-stroke engine study conducted to determine the level of the unburned hydrocarbon (HC) emission and its source. Other gas phase exhaust emissions are reported as well. Exhaust composition curves were generated from a material balance model with HCs included as a product. The calculated curves were used in the analysis of the experimental data. It was determined that 25-40% of the fuel air mixture was short-circuited to the exhaust in the scavenging process which resulted in unburned HC concentrations of 5000-1000 ppm hexane equivalent. It was found that short-circuiting is a function of load but is relatively independent of speed.
X