Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Lean Limit and Emissions at Near-Idle for a Gasoline HAJI System with Alternative Pre-Chamber Fuels

2007-09-16
2007-24-0120
Hydrogen assisted jet ignition (HAJI) is a pre-chamber ignition system for otherwise standard gasoline fueled spark ignition engines that involves the use of a chemically active turbulent jet to initiate combustion in lean fuel mixtures. HAJI burns the lean main charge rapidly and with almost no combustion variability, which allows for low hydrocarbon emissions and almost zero NOx, due to lower peak temperatures. This paper focuses on the effects of different pre-chamber fuels on combustion stability, lean limit and emissions in a single cylinder, HAJI equipped, CFR engine under a worst case, light load condition. Results indicate that the choice of pre-chamber fuel affects the main chamber lean limit but that emissions are not largely affected before this lean limit is reached. The lean limit was extended furthest, to λ = 2.5 with hydrogen, followed by λ = 2.35 with LPG, λ = 2.25 with CNG and λ = 2.15 with carbon monoxide.
Technical Paper

The Effects of Hot and Cool EGR with Hydrogen Assisted Jet Ignition

2007-08-05
2007-01-3627
Hydrogen assisted jet ignition (HAJI) is a pre-chamber ignition system for standard gasoline fueled engines that involves the use of a chemically active turbulent jet to initiate combustion in lean fuel mixtures. HAJI burns the lean main charge rapidly and with almost no combustion variability, which allows for low hydrocarbon emissions and almost zero NOx, due to lower peak temperatures. This paper focuses on the effects of internal and cooled external exhaust gas recirculation (EGR) on combustion parameters, emissions and thermal efficiency in a single cylinder HAJI equipped CFR engine. Experimental results indicate that replacing air with EGR in λ=2 mixtures can shift the lean limit at which NOx is negligible to mixtures as rich as λ=1.3, without a large penalty in hydrocarbon emissions and thermal efficiency.
X