Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Posture and Motion Prediction: Perspectives for Unconstrained Head Movements

2006-07-04
2006-01-2330
The relationship between motion and posture was investigated from the kinematics of unconstrained head movements. Head movements for visual gazing exhibited an initial component whose amplitude does not exceed 20.3° for target eccentricity up to 120°. This component was truncated by subsequent corrective movements whose occurrence generally increases with target eccentricity, although with a large variability (R2 ≤ 0.46). The head is finally stabilized at 72% of target eccentricity (R2 ≥ 0.92). These results indicate that the final head posture can be achieved through a number of loosely-programmed kinematic variations. Based on these results, unconstrained head movements were simulated, within the context of application to posture prediction for estimation of the visual field.
Technical Paper

Strength and Balance Guided Posture Selection during a Battery Maintenance Task

2006-04-03
2006-01-0698
Posture selection during standing exertions is a complex process involving tradeoffs between muscle strength and balance. Bodyweight utilization reduces the amount of upper-body strength required to perform a high force push/pull exertion but shifts the center-of-gravity towards the limits of the functional stability region. Thus balance constraints limit the extent to which bodyweight can be used to generate push/pull forces. This paper examines a two-handed sagittal plane pulling exertion performed during a battery maintenance task on a member of the family of medium-sized tactical vehicles (FMTV). Percent capable strength predictions and functional balance capabilities were determined for various two-handed pulling postures using the University of Michigan's 3D Static Strength Prediction Program (3DSSPP). Through this simulation study, preferred postures that minimize joint torques while maintaining balance were identified.
Technical Paper

Analysis and Redesign of Battery Handling using Jack™ and HUMOSIM Motions

2004-06-15
2004-01-2145
The evaluation of maintenance tasks is increasingly important in the design and redesign of many industrial operations including vehicles. The weight of subsystems can be extreme and often tools are developed to abate the ergonomic risks commonly associated with such tasks, while others are unfortunately overlooked. We evaluated a member of the family of medium-sized tactical vehicles (FMTV) and chose the battery handling from a list of previously addressed concerns regarding the vehicle. Particularly in larger vehicles, similar to those analyzed in this paper, batteries may exceed 35 kg (77 lbs). The motions required to remove these batteries were simulated using motion prediction modules from the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. These motions were visualized in UGS PLM Solutions' Jack™ and analyzed with the embedded 3-D Static Strength Prediction program.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Modifying Motions for Avoiding Obstacles

2001-06-26
2001-01-2112
Interference between physical objects in the workspace and the moving human body may cause serious problems, including errors in manual operation, physical damage and trauma from the collision, and increased biomechanical stresses due to movement reorganization for avoiding the obstacles. Therefore, a computer algorithm to detect possible collisions and simulate human motions to avoid obstacles will be an important tool for computer-aided ergonomics and optimization of system design in the early stage of a design process. In the present study, we present a method of modifying motions for obstacle avoidance when the object intrudes near the center of the planned motion. We take the motion modification approach, as we believe that for a certain class of obstacle avoidance problems, a person would modify a pre-planned motion that would result in a collision to a new one that is collision-free, as opposed to organizing a totally unique motion pattern.
Technical Paper

Development and Use of a Regenerative Braking Model for a Parallel Hybrid Electric Vehicle

2000-03-06
2000-01-0995
A regenerative braking model for a parallel Hybrid Electric Vehicle (HEV) is developed in this work. This model computes the line and pad pressures for the front and rear brakes, the amount of generator use depending on the state of deceleration (i.e. the brake pedal position), and includes a wheel lock-up avoidance algorithm. The regenerative braking model has been developed in the symbolic programming environment of MATLAB/SIMULINK/STATEFLOW for downloadability to an actual HEV's control system. The regenerative braking model has been incorporated in NREL's HEV system simulation called ADVISOR. Code modules that have been changed to implement the new regenerative model are described. Resulting outputs are compared to the baseline regenerative braking model in the parent code. The behavior of the HEV system (battery state of charge, overall fuel economy, and emissions characteristics) with the baseline and the proposed regenerative braking strategy are first compared.
Technical Paper

Investigation of Dummy Response and Restraint Configuration Factors Associated with Upper Spinal Cord Injury in a Forward-Facing Child Restraint

1993-11-01
933101
Dummy response and restraint configuration factors associated with a known child injury environment were investigated using a spinal-cord injury accident case, a full-scale reconstruction, and sled simulations. The work is one of several studies undertaken in association with the International Task Force on Child Restraining Systems to support the development of improved neck injury criteria and restraint systems for young children. A two-vehicle crash involving a restrained child occupant was investigated in detail and reconstructed in full-scale at the Transport Canada Motor Vehicle Test Centre using the CRABI 6-Month dummy. Vehicle damage and crush characteristics closely resembled that of the case vehicles. Dummy instrumentation included head and chest accelerometers and upper and lower neck transducers. The case occupant had been facing forward and had sustained a contusion of the spinal cord at T2 that resulted in paraplegia.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Cervical Spine Injury Mechanisms

1983-10-17
831616
A test series using eight unembalmed cadavers was conducted to investigate factors affecting the creation of cervical spine damage from impact to the crown of the head. The crown impact was accomplished by a free-fall drop of the test subject onto a load plate. The load plate striking surface was covered with padding to vary the contact force time characteristics. The orientations of the head, cervical spine, and torso were adjusted relative to a laboratory coordinate system to investigate the effects of head and spinal configuration on the damage patterns. Load and acceleration data are presented as a function of time and as a function of frequency in the form of mechanical impedance.
Technical Paper

Anatomy and Physiology of the Respiratory System

1971-02-01
710297
The anatomy of the human respiratory system is detailed. The function of the entire system is shown from inspiration to expiration. Equations are given to illustrate flow-pressure relationships in the airways. Specifics of gas transfer are shown. All these details of physiology and function are necessary for an understanding of the effects of air pollution upon the human respiratory system.
Technical Paper

Health Aspects of Atmospheric Exposure to Lead

1971-02-01
710302
The paper discusses how atmospheric exposure to lead affects health. Sources of lead in the atmosphere are explored, lead aerosol is described, and the importance of lead in the diet is discussed. Methods of detecting lead in the human system are detailed. The paper suggests that a threshold limit of atmospheric lead be firmly established.
Technical Paper

Basic Physiology of Carbon Monoxide

1971-02-01
710300
The physiology of carbon monoxide is discussed in the human respiratory system. The details of the relationship of carbon monoxide and hemoglobin are outlined, and the effects of specific concentrations of CO are shown. Acute and chronic exposures to CO create certain effects on the various bodily systems, and these are described in detail.
Technical Paper

DAMN - Digital Computer Program for the Dynamic Analysis of Generalized Mechanical Systems

1971-02-01
710244
Effective computer-aided design of engineering systems requires comprehensive computer-application software that conveniently adapts to the particular engineering design considered. This paper discusses the theoretical background and initial experience with a program intended for computer-aided design of machine-like mechanical systems, and outlines the use of a time-shared graphic terminal for schematic display of program output. The program is applicable to three types of mechanical systems: linear and nonlinear unconstrained dynamic systems, kinematic systems (that is, constrained systems), and multifreedom, constrained systems.
Technical Paper

Bioengineering of Impact Survival in Business Aircraft

1969-02-01
690335
Aircraft used for business (executive corporate transportation or personal business) and utility purposes now represent about one-third of the total United States aircraft inventory. Data from accident investigation of business aircraft involved in survivable accidents indicate serious injuries and fatality to the occupants occur most frequently as a result of the unprotected head and neck or chest flailing in contact with aircraft controls, instrument panel, or structure. Improvement of current aircraft to provide increased occupant safety and survival during crash impacts is both necessary and feasible. Design considerations include folding seat back locks to prevent collapse, increased seat tie-down to structure, instrument panels and glare shields designed to absorb energy through structural design and padding, stronger seat structure, lateral protection, design and packaging of knobs and projections to minimize injury in contact, and installation of upper torso restraint.
X