Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Spark Discharge Characteristics for Varying Spark Plug Geometries and Gas Compositions

2022-03-29
2022-01-0437
Spark discharge properties were studied and characterized for varying gas compositions and spark plug geometries using a spark calorimeter and constant volume optical vessel. Two different 18 mm natural gas engine spark plugs were used in the experiments. All measurements were recorded under quiescent conditions and with a spark gap of 0.30 mm. The spark plug calorimeter was used for measuring thermal energy deposition to the gas for gas compositions of nitrogen, a stoichiometric mixture of nitrogen and methane, a stoichiometric mixture of nitrogen and methane diluted with 30% carbon dioxide by volume, and for air. Other measurements of interest included breakdown voltage, electrical energy delivered to the spark gap, electrical-to-thermal energy conversion efficiency, and spark duration, for pressures up to 28 bar at 300 K. The optical vessel was used for the combusting mixture of stoichiometric air and methane at pressures up to 28 bar.
Journal Article

A Simulation Study on the Transient Behavior of a Gasoline Direct Injection Engine under Cold Start Conditions

2022-03-29
2022-01-0401
The cold start process is critical to control the emissions in a gasoline direct injection (GDI) engine. However, the optimization is very challenging due to the transient behavior of the engine cold start. A series of engine simulations using CONVERGE CFD™ were carried out to show the detailed process in the very first firing event of a cold start. The engine operating parameters used in the simulations, such as the transient engine speed and the fuel rail pressure (FRP), came from companion experiments. The cylinder pressure traces from the simulations were compared with experiments to help validate the simulation model. The effects of variation of the transient parameters on in-cylinder mixture distribution and combustion are presented, including the effects of the rapidly changing engine speed, the slowly vaporized fuel due to the cold walls, and the low FRP during the first firing cycle of a 4-cylinder engine. Comparison was also made with non-transient steady state operation.
Technical Paper

A New Sensor for On-Board Detection of Particulate Carbon Mass Emissions from Engines

2004-10-25
2004-01-2906
A new electronic sensor has been developed to measure the time-resolved concentration of carbonaceous particulate matter (PM) emitted in engine exhaust. One application of the sensor could be to provide cycle-resolved feedback on the carbonaceous PM concentration in the exhaust to the engine control unit (ECU), thereby enabling real-time control of engine operating parameters to lower PM emissions. Another promising application is to monitor the performance of particulate traps. The sensor was tested in exhaust flows from a single cylinder diesel engine and from a steady-state acetylene diffusion flame in a flow tunnel. Steady-state engine measurements were made at constant speed and variable load, and transient measurements were performed during engine start-up and accelerations. The sensor response was compared with an opacity meter and with gravimetric filter measurements.
Technical Paper

Effects of In-cylinder Flow on Fuel Concentration at the Spark Plug, Engine Performance and Emissions in a DISI Engine

2002-03-04
2002-01-0831
A fiber optic instrumented spark plug was used to make time-resolved measurements of the fuel vapor concentration history near the spark gap in a four-valve DISI engine. Four different bulk flow were investigated. Several early and late injection timings were examined. The fuel concentration at the spark gap was correlated with IMEP. Emissions of CO, HCs, and NOx were related to the type of bulk flow. For both early and late injection the CoVs of fuel concentration were generally lowest for the weakest bulk flow which resulted in a stable stratification. Strong bulk flows convected the inhomogeneities through the measurement area near the spark plug resulting in both large intracycle and cycle-to-cycle variation in equivalence ratio at the time of ignition.
Technical Paper

Effects of Piston Wetting on Size and Mass of Particulate Matter Emissions in a DISI Engine

2002-03-04
2002-01-1140
We have examined the influence of piston wetting on the size distribution and mass of particulate matter (PM) emissions in a SI engine using several different fuels. Piston wetting was isolated as a source of PM emissions by injecting known amounts of liquid fuel onto the piston top using an injector probe. The engine was run predominantly on propane with approximately 10% of the fuel injected as liquid onto the piston. The liquid fuels were chosen to examine the effects of fuel volatility and molecular structure on the PM emissions. A nephelometer was used to characterize the PM emissions. Mass measurements from the nephelometer were compared with gravimetric filter measurements, and particulate size measurements were compared with scanning electron microscope (SEM) photos of particulates captured on filters. The engine was run at 1500 rpm at the Ford world-wide mapping point with an overall equivalence ratio of 0.9.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

2001-05-07
2001-01-1976
A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
X