Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Journal Article

Gaussian Processes for Transfer Path Analysis Applied on Vehicle Body Vibration Problems

2022-06-15
2022-01-0948
Transfer path analyses of vehicle bodies are widely considered as an important tool in the noise, vibration and harshness design process, as they enable the identification of the dominating transfer paths in vibration problems. It is highly beneficial to model uncertain parameters in early development stages in order to account for possible variations on the final component design. Therefore, parameter studies are conducted in order to account for the sensitivities of the transfer paths with respect to the varying input parameters of the chassis components. To date, these studies are mainly conducted by performing sampling-based finite element simulations. In the scope of a sensitivity analysis or parameter studies, however, a large amount of large-scale finite element simulations is required, which leads to extremely high computational costs and time expenses. This contribution presents a method to drastically reduce the computational burden of typical sampling-based simulations.
Journal Article

Sensitivity Analysis of NVH Simulations with Stochastic Input Parameters for a Car Body

2022-06-15
2022-01-0951
Uncertainties play a major role in vibroacoustics - especially in car body design in the preliminary development because of the overall spread in the production that should be covered with one simulation model. Therefore, we use uncertain input parameters to determine the stochastically distributed admittance of the car body before each part of the car is fully designed. To gain a stochastic result - the stochastically distributed admittance curve - we calculate a deterministic finite element simulation several times with sets of stochastically distributed input parameter values. To reduce simulation time and cost of the car model with many million degrees of freedom we focus on the uncertain parameters that show a significant influence on the admittance curve. It is therefore necessary to be able to accurately estimate for each parameter if its influence on the admittance of the car body plays a major role for the noise vibration harshness simulation.
X