Refine Your Search

Topic

Search Results

Technical Paper

A Three-Dimensional Flame Reconstruction Method for SI Combustion Based on Two-Dimensional Images and Geometry Model

2022-03-29
2022-01-0431
A feasible method was developed to reconstruct the three-dimensional flame surface of SI combustion based on 2D images. A double-window constant volume vessel was designed to simultaneously obtain the side and bottom images of the flame. The flame front was reconstructed based on 2D images with a slicing model, in which the flame characteristics were derived by slicing flame contour modeling and flame-piston collision area analysis. The flame irregularity and anisotropy were also analyzed. Two different principles were used to build the slicing model, the ellipse hypothesis modeling and deep learning modeling, in which the ellipse hypothesis modeling was applied to reconstruct the flame in the optical SI engine. And the reconstruction results were analyzed and discussed. The reconstruction results show that part of the wrinkled and folded structure of the flame front in SI engines can be revealed based on the bottom view image.
Technical Paper

Multiple Engine Faults Detection Using Variational Mode Decomposition and GA-K-means

2022-03-29
2022-01-0616
As a critical power source, the diesel engine is widely used in various situations. Diesel engine failure may lead to serious property losses and even accidents. Fault detection can improve the safety of diesel engines and reduce economic loss. Surface vibration signal is often used in non-disassembly fault diagnosis because of its convenient measurement and stability. This paper proposed a novel method for engine fault detection based on vibration signals using variational mode decomposition (VMD), K-means, and genetic algorithm. The mode number of VMD dramatically affects the accuracy of extracting signal components. Therefore, a method based on spectral energy distribution is proposed to determine the parameter, and the quadratic penalty term is optimized according to SNR. The results show that the optimized VMD can adaptively extract the vibration signal components of the diesel engine. In the actual fault diagnosis case, it is difficult to obtain the data with labels.
Technical Paper

Research on Trajectory Planning and Tracking Strategy of Lane-changing and Overtaking based on PI-MPC Dual Controllers

2021-10-11
2021-01-1262
Aiming at the problem of poor robustness after the combination of lateral kinematics control and lateral dynamics control when an autonomous vehicle decelerates and changes lanes to overtake at a certain distance. This paper proposes a trajectory determination and tracking control method based on a PI-MPC dual algorithm controller. To describe the longitudinal deceleration that satisfies the lateral acceleration limit during a certain distance of lane change, firstly, a fifth-order polynomial and a uniform deceleration motion formula are established to express the lateral and longitudinal displacements, and a model prediction controller (MPC) is used to output the front wheel rotation angle. Through the dynamic formula and the speed proportional-integral (PI) controller to control and adjust the brake pressure.
Technical Paper

Effect of Intake Air Hydrogenation Coupled with Intake Air Humidification on Combustion and Emissions of Marine Diesel Engine

2021-04-06
2021-01-0502
The purpose of this study is to investigate the effect of intake air hydrogenation coupled with intake air humidification (IAH) on the combustion and emission of marine diesel engines. A 3D numerical model of four-stroke turbocharged intercooled marine diesel engine was established by using commercial software AVL-Fire. The effects of hydrogen and water injected into the intake port on engine in-cylinder combustion and emission characteristics at 1350 r/min and partial load were studied. The novelty of this study is to combine different hydrogen-fuel ratios and water-fuel ratios, so as to find the optimization method that can reduce NOx and soot emissions and ensure the thermal efficiency of the engine doesn’t decrease.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

2020-04-14
2020-01-0860
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA).
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation

2020-04-14
2020-01-0244
Strategies to suppress knock have been extensively investigated to pursue thermal efficiency limits in downsized engines with a direct-injection spark ignition. Comprehensive considerations were given in this work, including the effects of second injection timing and injector location on knock combustion in a downsized gasoline engine by large eddy simulation. The turbulent flame propagation is determined by an improved G-equation turbulent combustion model, and the detailed chemistry mechanism of a primary reference fuel is employed to observe the detailed reaction process in the end-gas auto-ignition process. The conclusions were obtained by comparing the data to the baseline single-injection case with moderate knock intensity. Results reveal that for both arrangements of injectors, turbulence intensity is improved as the injecting timing is retarded, increasing the flame propagation speed.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

2019-12-19
2019-01-2184
OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Technical Paper

Analysis of a Coordinated Engine-Start Control Strategy for P2 Hybrid Electric Vehicle

2019-11-04
2019-01-5023
P2 hybrid electric vehicle is the single-motor parallel configuration integrating with an engine disconnect clutch (EDC) between the engine and the motor. The key point with P2 hybrid electric vehicle is to start the engine utilizing the single driving motor while still propelling the vehicle, which requires an appropriate engine-start control strategy and a high mechanical performance of EDC. Since the space for EDC is limited, EDC torque response is difficult to follow the torque command, which complicates the issue of precisely controlling the clutch. Consequently, methods proposed in massive papers are inappropriate for current EDC of target vehicle. Considering that slip control of shifting clutch also contributes to reducing impact of engine start assisted by EDC, a detailed engine-start control strategy was proposed to simplify the control of EDC for being applied to actual target vehicle.
Technical Paper

Effect of Turbulence-Chemistry Interaction on Spray Combustion: A Large Eddy Simulation Study

2019-04-02
2019-01-0203
Although turbulence plays a critical role in engines operated within low temperature combustion (LTC) regime, its interaction with chemistry on auto-ignition at low-ambient-temperature and lean-oxygen conditions remains inadequately understood. Therefore, it is worthwhile taking turbulence-chemistry interaction (TCI) into consideration in LTC engine simulation by employing advanced combustion models. In the present study, large eddy simulation (LES) coupled with linear eddy model (LEM) is performed to simulate the ignition process in n-heptane spray under engine-relevant conditions, known as Spray H. With LES, more details about unsteady spray flame could be captured compared to Reynolds-averaged Navier-Stokes equations (RANS). With LEM approach, both scalar fluctuation and turbulent mixing on sub-grid level are captured, accounting for the TCI. A skeletal mechanism is adopted in this numerical simulation, including 41 species and 124 reactions.
Technical Paper

A Simulation Study on Particle Deposition and Filtration Characteristics in Wall-Flow DPF with Inhomogeneous Wall Structure Using a Two-Dimensional Microcosmic Model

2019-04-02
2019-01-0995
A new two-dimensional wall-flow DPF microstructure model has been developed in this paper to investigate the particle deposition distribution in DPF channels and the deep-bed filtration process of DPF. The substrate wall of the DPF having a thickness of L is divided into several layers with a uniform thickness of Δy along the cross-wall direction, and each layer has specific porosity and pore size. The pressure drop, particle deposition distribution and the dynamic deep-bed filtration process of the DPF with inhomogeneous wall structure are studied under various space velocities. Besides, the differences on DPF’s performance brought by the inhomogeneous wall structure are discussed by comparing with a homogeneous wall structure.
Technical Paper

Optical Experiments on Strong Knocking Combustion in Rapid Compression Machines with Different Fuels

2019-04-02
2019-01-1142
Nowadays the strong knocking combustion involving destructive pressure wave or shock wave has become the main bottleneck for highly boosted engines when pursuing high thermal efficiency. However, its fundamental mechanism is still not fully understood. In this study, synchronization measurements through simultaneous pressure acquisition and high-speed direct photography were performed to comparatively investigate the strong knocking combustion of iso-octane and propane in a rapid compression machine with flat piston design. The pressure characteristics and visualized images of autoignition and reaction wave propagation were compared, and the correlations between thermodynamic trajectories and mixture reactivity progress were analyzed. The results show that iso-octane behaves a greater propensity to strong knocking combustion than propane at similar target pressures.
Technical Paper

Dilution Boundary Expansion Mechanism of SI-CAI Hybrid Combustion Based on Micro Flame Ignition Strategy

2019-04-02
2019-01-0954
In decade years, Spark Ignition-Controlled Auto Ignition (SI-CAI) hybrid combustion, also called Spark Assisted Compression Ignition (SACI) has shown its high-efficiency and low emissions advantages. However, high dilution causes the problem of unstable initial ignition and flame propagation, which leads to high cyclic variation of heat release and IMEP. The instability of SI-CAI hybrid combustion limits its dilution degree and its ability to improve the thermal efficiency. In order to solve instability problems and expand the dilution boundary of hybrid combustion, micro flame ignition (MFI) strategy is applied in gasoline hybrid combustion engines. Small amount of Dimethyl Ether (DME) chosen as the ignition fuel is injected into cylinder to form micro flame kernel, which can stabilize the ignition combustion process.
Technical Paper

Three-Dimensional Multi-Scale Simulation for Large-Scale Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0381
PEMFC (proton exchange membrane or polymer electrolyte membrane fuel cell) is a potential candidate as a future power source for automobile applications. Water and thermal management is important to PEMFC operation. Numerical models, which describe the transport and electrochemical phenomena occurring in PEMFCs, are important to the water and thermal management of fuel cells. 3D (three-dimensional) multi-scale CFD (computational fluid dynamics) models take into account the real geometry structure and thus are capable of predicting real operation/performance. In this study, a 3D multi-phase CFD model is employed to simulate a large-scale PEMFC (109.93 cm2) under various operating conditions. More specifically, the effects of operating pressure (1.0-4.0 atm) on fuel cell performance and internal water and thermal characteristics are studied in detail under two inlet humidities, 100% and 40%.
Journal Article

A Quasi-2D Transient Multiphase Modeling of Cold Start Processes in Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0390
It’s well known that startup process of proton exchange membrane fuel cells (PEMFCs) under subzero temperature is extremely significant because of its influence on fuel cell performance and durability. In the study, a quasi-2D numerical model is developed and dynamic equations of mass conservation, energy conservation, membrane water conservation, ice conservation, species conservation are all considered. Three different hydrogen supply modes are studied in detail: flow-through anode (FTA) mode, dead-ended anode (DEA) mode and off-gas recirculation (OR) mode. It is found that the local current density (LCD) and temperature distribution vary remarkably along flow channel in OR mode as t > 500s due to nitrogen crossover and accumulation. During the cold start operation, the DEA mode and OR mode hold more water in anode catalyst layer (ACL) which reduces the effects of hydraulic permeation, resulting in more ice formation in cathode catalyst layer (CCL) and slower temperature rising.
Technical Paper

LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine

2019-01-15
2019-01-0006
Combustion cycle-to-cycle variation (CCV) of Spark-Ignition (SI) engines can be influenced by the cyclic variations in charge motion, trapped mass and mixture composition inside the cylinder. A high CCV leads to misfire or knock, limiting the engine’s operating regime. To understand the mechanism of the effect of flow field and mixture compositions on CCV, the present numerical work was performed in a single cylinder Direct Injection Spark-Ignition (DISI) engine. A large eddy simulation (LES) approach coupled with the G-equation combustion model was developed to capture the CCV by accurately resolving the turbulent flow field spatially and temporally. Further, the ignition process was modeled by sourcing energy during the breakdown and arc phases with a line-shape ignition model which could move with the local flow. Detailed chemistry was solved both inside and outside the flame front. A compact 48-species 152-reactions primary reference fuel (PRF) reduced mechanism was used.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Numerical Investigation on Effects of Combustion Chamber Structure and Oxygen Enriched Air on Combustion and Emission Characteristics of Marine Diesel Engine

2018-09-10
2018-01-1786
In order to improve the combustion and emissions for high-speed marine diesel engines, numerical investigations on effects of different combustion chamber structures combined with oxygen enriched air have to be conducted. The study uses AVL Fire code to establish three-dimensional combustion model and simulate the in-cylinder flow, air-fuel mixing and combustion process with the flow dynamics metrics such as swirl number and uniformity index, analyze the interactional effects of combustion chamber structures and oxygen enriched air against the experimental data for a part load operation at 1350 r/min, find the optimized way to improve engine performance as well as decrease the NOx and soot emissions. The novelty is that this study is to combine different oxygen concentration with different combustion chamber structures including the re-entrant chamber, the straight chamber and the open chamber.
Technical Paper

Numerical Investigation on Effects of Oxygen-Enriched Air and Intake Air Humidification on Combustion and Emission Characteristics of Marine Diesel Engine

2018-09-10
2018-01-1788
In order to meet the increasingly stringent emissions restriction, it is indispensable to improve the combustion and emissions technology of high-speed marine diesel engines. Oxygen-enriched combustion and intake air humidification are effective ways to control pollution from diesel engines and improve combustion of diesel engines. In this study, the combustion and emission characteristics of supercharged intercooled marine diesel engine with humidity ratio and intake oxygen concentration were investigated by using multi-dimensional CFD model. The combustion model was established by AVL Fire code. The combination strategy of intake air humidification and oxygen-enriched combustion were optimized under partial load at 1350 rpm.
X