Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of Energy Optimal Control to Energy Management of Hybrid Vehicle

2011-05-17
2011-39-7244
Energy optimal control theory (EOC) is applied to the energy flow control of a hybrid electric vehicle. Since the differential equation is solved analytically, the control law can be easily implemented in real time. Because the objective function is described in power form that permits negative value, not only the energy consumption is minimized but also the energy regeneration by the motor is maximized. In the simulation for the 10-mode driving, it is shown that the fuel cost of EOC is 15% lower than the rule based control (RBC).
Journal Article

Visualization of Oxidation of Soot Nanoparticles Trapped on a Diesel Particulate Membrane Filter

2011-04-12
2011-01-0602
Through microscopic visualization experiments, a process generally known as depth filtration was shown to be caused by surface pores. Moreover, the existence of a soot cake layer was an important advantage for filtration performance because it could trap most of the particulates. We proposed an ideal diesel particulate filter (DPF), in which a silicon carbide (SiC) nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) instead of a soot cake was sintered on the DPF wall surface; this improved the filtration performance at the beginning of the trapping process and reduced energy consumption during the regeneration process. The proposed filter was called a diesel particulate membrane filter (DPMF). A diesel fuel lamp was used in the trapping process to verify the trapping and oxidation mechanisms of ultrafine particulate matter. Thus, the filtration performance of the membrane filters was shown to be better than that of conventional DPFs.
Technical Paper

High Temperature Gasification of Solid Fuels

1999-08-02
1999-01-2649
A new energy extraction and utilization system for low grade solid fuels such as coal and wastes is proposed, where solid fuels are gasified with high temperature air. The syngas is first cooled in a waste heat recovery boiler to extract its sensible thermal energy followed by conventional low temperature gas cleaning. A part of this cleaned-up syngas is used for high temperature air preheating while the rest is used for various energy utilization and conversion systems such as industrial furnaces, boilers and gas turbines. Experimental demonstration results for two main components, i.e. a gasifier and a high temperature air preheater are reported.
X