Refine Your Search

Topic

Search Results

Technical Paper

Influence of Roof Sensor System on Aerodynamics and Aero-Noise of Intelligent Vehicle

2023-04-11
2023-01-0841
The roof sensor system is an indispensable part of intelligent vehicles to observe the environment, however, it deteriorates the aerodynamic and noise performance of the vehicle. In this paper, large eddy simulation and the acoustic perturbation equation are combined to simulate the flow and sound fields of the intelligent vehicle. Firstly, test and simulation differences of aerodynamic drag and pressure coefficients on the roof and rear of the intelligent vehicle without roof sensor system are discussed. It is found that the difference in aerodynamic drag coefficient is 5.5%, and the pressure coefficients’ differences at 21 out of 24 measurement points are less than 0.05. On this basis, under the influence of the sensor system, the aerodynamic drag coefficient of the intelligent vehicle is increased by 23.4%.
Technical Paper

Performance Limitations Analysis of Visual Sensors in Low Light Conditions Based on Field Test

2022-12-22
2022-01-7086
Visual sensors are widely used in autonomous vehicles (AVs) for object detection due to the advantages of abundant information and low-cost. But the performance of visual sensors is highly affected by low light conditions when AVs driving at nighttime and in the tunnel. The low light conditions decrease the image quality and the performance of object detection, and may cause safety of the intended functionality (SOTIF) problems. Therefore, to analyze the performance limitations of visual sensors in low light conditions, a controlled light experiment on a proving ground is designed. The influences of low light conditions on the two-stage algorithm and the single-stage algorithm are compared and analyzed quantificationally by constructing an evaluation index set from three aspects of missing detection, classification, and positioning accuracy.
Journal Article

Effect of Geometric Parameters on Folding of Thin-Walled Steel Tube under Axial Compression

2022-03-29
2022-01-0264
This study investigated the plastic deformation behavior of 304 stainless steel thin-walled tubes under axial compression by means of numerical calculation and theoretical analysis. It was found that the plastic deformation length of thin-walled tube determined the formability of folds and the work done in the whole axial compression process. To reveal the relation between the range of plastic deformation length and tube geometry parameters, regression equations were established using the quadratic regression orthogonal design method. Experiments were conducted to validate the equations. The process windows for forming a single fold and tube joining at ends had been printed ultimately. The results showed that the regression equations can accurately predict the range of plastic deformation length for forming a single fold.
Technical Paper

Compressive and Bending Resistance of the Thin-Walled Hat Section Beam with Strengthened Ridgelines

2021-04-06
2021-01-0293
To overcome some drawbacks of using UHSS (Ultra High Strength Steel) in vehicle weight reduction, like spot weld HAZ (Heat Affected Zone) softening, hard machining and brittleness, a new solution of ultra-high stress strengthening was proposed and applied to the ridgelines of thin-walled structures in this paper. Firstly, stress distribution characteristics, the laws of stress variation and the compressed plate buckling process of the rectangular thin-walled beam under compressive and bending load were analyzed in elastic plastic stage by theory and Finite Element (FE) simulation. Secondly, based on elastic plastic buckling theory of the compressed plate and stress distribution similarity of the buckling process of the thin-walled box structure, three factors influencing the ultimate resistance enhancement of thin-walled hat section beam were found, and the rationality and accuracy of cross section ultimate resistance prediction formulas were also verified by FE simulation.
Technical Paper

LiDAR-Based High-Accuracy Parking Slot Search, Detection, and Tracking

2020-12-29
2020-01-5168
The accuracy of parking slot detection is a challenge for the safety of the Automated Valet Parking (AVP), while traditional methods of range sensor-based parking slot detection have mostly focused on the detection rate in a scenario, where the ego-vehicle must pass by the slot. This paper uses three-dimensional Light Detection And Ranging (3D LiDAR) to efficiently search parking slots around without passing by them and highlights the accuracy of detecting and tracking. For this purpose, a universal process of 3D LiDAR-based high-accuracy slot perception is proposed in this paper. First, the method Minimum Spanning Tree (MST) is applied to sort obstacles, and Separating Axis Theorem (SAT) are applied to the bounding boxes of obstacles in the bird’s-eye view, to find a free space between two adjacent obstacles. These bounding boxes are obtained by using common point cloud processing methods.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Technical Paper

Modeling and Analysis of Temperature Field of Permanent Magnet Synchronous Motor Considering High Frequency Magnetic Field Characteristics

2020-04-14
2020-01-0457
The vehicle permanent magnet synchronous motor has the advantages of high power density, compact structure and small size, which makes it generate heat obviously in the process of energy conversion, which seriously affects the service life of the motor and the performance of permanent magnet. Predicting magnet temperature is a challenging task, in lab and various specialized applications, infrared sensors or thermocouples are used to measure the temperature, but it cost a lot. In order to predict the temperature field of the motor, the hysteresis characteristic test of the core material of the motor is carried out in this paper. The hysteresis characteristic and loss of electrical steel under different temperature, magnetic field intensity and magnetic field frequency are tested. It is found that the loss of electrical steel increases with the increase of magnetic induction intensity and magnetic field frequency.
Technical Paper

Lumped Parameter Transient Thermal Model of Motor Considering Temperature and Flow Rate of Cooling Water

2019-04-02
2019-01-0890
The influence of heat flow and cooling water characteristics on motor temperature cannot be accurately reflected by the traditional motor temperature analysis method. In order to study the motor and its key components’ temperature characteristics under different temperatures and flow rates of cooling water, this paper establishes the lumped parameter transient thermal model which includes cooling water module, based on a 50kW permanent magnet synchronous motor. The transient and steady temperature is calculated through this model together with the motor loss calculation module in the electric drive system model. The influence of different temperature and flow rate of cooling water on motor and its key components’ temperature characteristics is compared. During the modeling process, the motor body is divided into 14 parts, based on the internal heat flow path of the motor. The thermal resistance of each key component and cooling water is calculated.
Technical Paper

Optimization Design of Rear-Engine Bus Cooling System Based on 1D/3D Coupling Simulation

2018-04-03
2018-01-0771
This study investigated the effects of underhood structure parameters (two types of air ducts, two types of inlet grilles and the opening angle of inlet grilles) on the cooling characteristics of the rear-engine bus; then, the optimum design scheme of the underhood was determined. The air-side resistance load of the cooling system, which is based on fan performance, was selected as the optimization objective. Simulations were created based on a porous media model and standard a k-ε model. The next step was to build a 1D/3D coupling simulation to utilize the advantages of 1D simulation’s fast convergence speed and 3D simulation’s extensive research range. Besides, the use of 1D/3D coupling simulation can efficiently avoid the errors of simulation results which arise from the non-uniform airflow on the cooling module. Results show that the airflow rate of the rectangular air duct increased by 7 to 11percent.
Technical Paper

Modeling and Numerical Analysis of Automotive Aerodynamic Noise Generation and Transmission Considering Equivalent Nonlinear Sealing

2018-04-03
2018-01-0469
Aerodynamic noise transmits through automotive window, causing great adverse influence on comfortability and noise-vibration-harshness (NVH) performance. However, the complicated external turbulent air flow, as well as the internal metal-rubber nonlinear sealing constraint, makes the mechanism of aerodynamic noise generation and transmission very difficult. Regarding the complex exterior aerodynamics-induced load and nonlinear metal-rubber interaction and constraint, an efficient two-step numerical prediction method is presented in order to study the mechanism of its generation and transmission. The first step uses the commercial ANSYS-Fluent computational fluid dynamics (CFD) analysis based on the shear stress transport (SST) - turbulence kinetic energy (k) - the rate of dissipation of turbulence kinetic energy ε (epsilon) model and Lighthill’s noise source theory.
Technical Paper

Concurrent Optimization of Ply Orientation and Thickness for Carbon Fiber Reinforced Plastic (CFRP) Laminated Engine Hood

2018-04-03
2018-01-1121
Carbon fiber reinforced plastic (CFRP) composites have gained particular interests due to their high specific modulus, high strength, lightweight and resistance to environment. In the automotive industry, numerous studies have been ongoing to replace the metal components with CFRP for the purpose of weight saving. One of the significant benefits of CFRP laminates is the ability of tailoring fiber orientation and ply thickness to meet the acceptable level of structural performance with little waste of material capability. This study focused on the concurrent optimization of ply orientation and thickness for CFRP laminated engine hood, which was based on the gradient-based discrete material and thickness optimization (DMTO) method. Two manufactural constraints, namely contiguity and intermediate void constraints, were taken into account in the optimization problem to reduce the potential risk of cracking matrix of CFRP.
Technical Paper

Impact Mechanism of Multiple Major Welding Parameters on Mechanical Properties of Laser Brazing Lap Joint of Galvanized Steel for Vehicle

2017-09-22
2017-01-5010
In order to research the effect of process parameters (laser power, welding speed, wire-feed speed, spot diameter) on mechanical properties of Zn-coated Steel Laser Brazing Lap Joint for vehicle, the influence of welding parameters on energy input of brazing seam cross section was theoretically analyzed, and then a great number of laser brazing experiments of 0.7mm galvanized steel was carried out. After that, the tensile strength and micro-hardness tests were also done for well-formed joints of galvanized steel formed in the laser brazing. The results show that joints with good mechanical properties and surface morphology can be formed when laser power is in the range of 2500-3200W and the other parameters keep in a specified range. Joint performance significantly reduces when the value of wire-feed speed exceeds 3.0m/min for that a wider brazing seam cross section can’t be formed.
Journal Article

Re-Design for Automotive Window Seal Considering High Speed Fluid-Structure Interaction

2017-04-11
2017-01-9452
Automotive window seal has great influence on NVH (Noise-Vibration-Harshness) performance. The aerodynamic effect on ride comfort has attracted increasing research interest recently. A new method for quantifying and transferring aerodynamics-induced load on window seal re-design is proposed. Firstly, by SST (Shear Stress Transport) turbulence model, external turbulent flow field of full scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the aerodynamics pressure on overall auto-body is retrieved and transferred to local glass area to be external loads for seals, thus taking into account the aerodynamics effect of high speed fluid-structure interaction. This method is successfully applied on automotive front window seal design. The re-design header seal decreases the maximum displacements of leeward and windward glass with 9.3% and 34.21%, respectively.
Technical Paper

Numerical Simulation of CFRP Thin-Walled Tubes Subjected to Quasi-Static Axial Crushing

2017-03-28
2017-01-0465
Carbon Fiber Reinforced Plastic (CFRP) tube is an important material for the lightweight design of automotive structures. Simulation method of CFRP thin-walled tubes subjected to axial compression using MAT54 in LS-DYNA was investigated. Based on the two-layer shell model combined with MAT54, failure strategy and the parameters sensitivity of the model were discussed in detail. Then the simulation model was verified by using duplicate specimens comprised of carbon fiber/epoxy unidirectional prepreg tape. Furthermore, the modeling methods of crush trigger and different types of loading speed were analyzed. In addition, based on the method of equal energy absorption, energy absorption performance of thin-walled circular and square tubes made from four materials including mild steel, high strength steel, aluminum alloy and CFRP were also compared.
Journal Article

Effects of Installation Environment on Flow around Rear View Mirror

2017-03-28
2017-01-1517
External rear view mirror is attached at the side of the vehicle which is to permit clear vision for the driver to the rear of the vehicle. When the vehicle is running, the flow field around external rear view mirror is highly three-dimensional, unsteady, separated and turbulent which is known to be a significant source of aerodynamic noise and a contributor to the total drag force on the vehicle. While among all the researches on the flow field around external rear view mirror, different installation environment were employed. The external rear view mirror is mounted on a production car in most researches which presents the real condition and it can also be mounted on the ground of a wind tunnel, a specially designed table, or a generic vehicle model based on the SAE model. While, the relationship between the flow field around external rear view mirror and the installation environment is not very clear.
Journal Article

Uncertainty Optimization of Thin-walled Beam Crashworthiness Based on Approximate Model with Step Encryption Technology

2016-04-05
2016-01-0404
Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Technical Paper

Numerical Investigation of Geometry Effects on Flow, Heat Transfer and Defrosting Characteristics of a Simplified Automobile Windshield with a Single Row of Impinging Jets

2016-04-05
2016-01-0208
The effect of jet geometry on flow, heat transfer and defrosting characteristics was numerically investigated for elliptic and rectangular impinging jets on an automobile windshield. Initially, various turbulence models within the commercial computational fluid dynamics (CFD) package FLUENT were employed and validated for a single jet, and the results indicated that the impinging jet heat transfer was more accurately predicted by the SST k -ω turbulence model, which was then utilized for this study. The aspect ratios (AR) of elliptic and rectangular jets were respectively 0.5, 1.0, and 2.0, with jet-to-target spacing h/d=2, 4 and jet-to-jet spacing c/d=4, and all those situations were numerically analyzed with the same air mass flow and jet open area. It was observed that the heat transfer coefficient and defrosting performance of the inclined windshield were significantly affected by the shape of the jet, and the best results were obtained with the elliptic jet arrangements.
Technical Paper

Energy Absorption Behavior and Application of Thin-walled Box Structure with Higher Strength in Ridgelines

2016-04-05
2016-01-0398
To overcome some drawbacks of using AHSS (Advanced High Strength Steel) in vehicle weight reduction, like brittleness, spot weld HAZ (Heat Affected Zone) softening and high cost, a new ridgeline strengthening technology was introduced and applied to the thin-walled structure in this paper. The energy absorption mechanism of thin-walled box structure with selective strengthened ridgelines under axial compressing load was discussed in first section. After this, the formulas of mean crushing force and corresponding energy absorption for square tube were theoretically discussed. To demonstrate prediction capabilities of formulas, a set of FE simulations of square tubes were conducted. Simulation results show that energy absorption capacity of square tube under quasi-static axial crushing load is dramatically improved by selectively strengthening their ridgelines.
Technical Paper

Defrost Efficiency Analysis of PMMA Rear Window

2016-04-05
2016-01-0511
As a potential material for lightweight vehicle, polymethyl methacrylate (PMMA) has proven to perform well in optical behavior and weather resistance. However, the application in automotive glazing has seldom been studied. This paper investigates the defrost performance of PMMA rear window using both numerical and experimental methods. The finite element analysis (FEA) results were found to be in good agreement with the experimental data. Based on the validated finite element model, we further optimized the defrost efficiency by changing the arrangement of heating lines. The results demonstrated the frost layer on the vision-related region of PMMA rear window can melt within 30 minutes, which meets the requirement of defrost efficiency.
X