Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Rapid assessment of power battery states for electric vehicles oriented to after-sales maintenance

2024-04-09
2024-01-2201
With the continuous popularization of electric vehicles (EVs), ensuring the best performance of EVs has become a significant concern, and lithium-ion power batteries are considered as the essential storage and conversion equipment for EVs. Therefore, it is of great significance to quickly evaluate the state of power batteries. This paper investigates a fast state estimation method of power batteries oriented to after-sales and maintenance. Based on the battery equivalent circuit model and heuristics optimization algorithm, the battery model parameters, including the internal ohmic and polarization resistance, can be identified using only 30 minutes of charging or discharging process data without full charge or discharge. At the same time, the proposed method can directly estimate the state of charge (SOC) and maximum available capacity of the battery without knowing initial SOC information.
Technical Paper

Revealing the Impact of Mechanical Pressure on Lithium-Ion Pouch Cell Formation and the Evolution of Pressure During the Formation Process

2024-04-09
2024-01-2192
The formation is a crucial step in the production process of lithium-ion batteries (LIBs), during which the solid electrolyte interphase (SEI) is formed on the surface of the anode particles to passivate the electrode. It determines the performance of the battery, including its capacity and lifetime. A meticulously designed formation protocol is essential to regulate and optimize the stability of the SEI, ultimately achieving the optimal performance of the battery. Current research on formation protocols in lithium-ion batteries primarily focuses on temperature, current, and voltage windows. However, there has been limited investigation into the influence of different initial pressures on the formation process, and the evolution of cell pressure during formation remains unclear. In this study, a pressure-assisted formation device for lithium-ion pouch cells is developed, equipped with pressure sensors.
Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Technical Paper

Optical Investigation of Lean Combustion Characteristics of Non-Uniform Distributed Orifice Passive Pre-Chamber on a High Compression Ratio GDI Engine

2024-04-09
2024-01-2101
The passive pre-chamber (PC) is valued for its jet ignition (JI) and is suitable for wide use in the field of gasoline direct injection (GDI) for small passenger cars, which can improve the performance of lean combustion. However, the intake, exhaust, and ignition combustion stability of the engine at low speed is a shortcoming that has not been overcome. Changing the structural design to increase the fluidity of the main chamber (MC) and pre-chamber (PC) may reduce jet ignition performance, affecting engine dynamics. This investigation is based on non-uniformly nozzles distributed passive pre-chamber, which is adjusted according to the working medium exchange between PC and MC. The advantages and disadvantages of the ignition mode of PC and SI in the target engine speed range are compared through optical experiments on a small single-cylinder GDI engine.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

Optimization of Cold Start Performance of Diesel Engine Under Low Temperature and High Altitude Environment

2024-04-09
2024-01-2455
The problem of keeping the stable starting performance of diesel engine under high altitude and low temperature conditions has been done a lot of research in the field of diesel engine, but there is a lack of research on extreme conditions such as above 2000 meters above sea level and below 0°C. Aiming at solving the cold start problem of diesel engine in extreme environment, a set of chamber system of cold start environment diesel engine was constructed to simulate environment of 3000m altitude and -20°C. A series of experimental research was conducted on cold start efficiency optimization strategy of a certain type of diesel engine at 3000m altitude and -20°C. In parallel, a diesel engine model was constructed through Chemkin to explore the influence of the three parameters of compression ratio, stroke length, and fuel injection advance angle on the first cold start cycle of diesel engine at 4000m altitude and -20°C.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

NOx Emission Characteristics of Active Pre-Chamber Jet Ignition Engine with Ammonia Hydrogen Blending Fuel

2023-10-31
2023-01-1629
Ammonia is employed as the carbon-free fuel in the future engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx and unburned NH3/H2 in the exhaust emissions is produced from combustion of ammonia and is one kind of the most strictly controlled pollutants in the emission regulation. This paper aims to investigate the NOx and unburned NH3/H2 generative process and emission characteristics by CFD simulation during the engine combustion. The results show that the unburned ammonia and hydrogen emissions increase with an increase of equivalence ratio and hydrogen blending ratio. In contrast, the emission concentrations of NOx, NO, and NO2 decrease with the increasing of equivalence ratio, but increase with hydrogen blending ratio rising. The emission concentration of N2O is highly sensitive to the O/H group and temperature, and it is precisely opposite to that of NO and NO2.
Technical Paper

Research on the Control Method of Staggered Parallel Boost Structure in Fuel Cell System

2023-10-30
2023-01-7028
Fuel cells’ soft output characteristics and mismatched voltage levels with subordinate electrical devices necessitate the use of DC/DC converters, which are an important part of the power electronic subsystem of the fuel cell system. The staggered parallel Boost topology is commonly employed in fuel cell DC/DC converters. This paper focuses on the control characteristics of the two-phase interleaved parallel Boost topology in the context of a fuel cell system. Specifically, we derive the small-signal model and output-control transfer function of the topology, and design a controller based on frequency characteristic analysis. Our proposed controller uses a cascaded double-ring structure and supports both constant current and constant voltage switching modes. To evaluate the effectiveness of our proposed control strategy, we conduct simulation and prototype testing.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
Technical Paper

Acoustic and Aerodynamic Performances of One Phononic Crystal Duct with Periodic Mufflers

2023-04-11
2023-01-0433
The acoustic muffler is one of the practical solutions to reduce the noise in ducts. The acoustic and aerodynamic performances are two critical indices of one muffler for the air intake system of a hydrogen fuel cell electric vehicle (FCEV). In this study, the concept of phononic crystal is applied to design the muffler to obtain superior acoustic performance. One duct with periodic and compact resonator-type mufflers is designed for broadband noise attenuation. The two-dimensional (2D) transfer matrix method and bandgap theory are employed to calculate the transmission loss (TL) and acoustic bandgap. It is numerically and theoretically demonstrated that broadband noise attenuation could be acquired from 500Hz to 3500Hz. Afterwards, the three-dimensional (3D) computational fluid dynamics (CFD) approach is applied to predict the pressure distribution. The results indicate that the proposed hybrid muffler and the phononic crystal duct possess low pressure loss values.
Technical Paper

Simplified Modeling of an Innovative Heating Circuit for Battery Pack Based on Traction Motor Drive System

2023-04-11
2023-01-0515
Alternating current (AC) heating is an efficient and homogeneous manner to warm Lithium-ion batteries (LIBs) up. The integrated design of AC heating combined with the motor drive circuit has been studied by many scholars. However, the problems of excessive heating frequency (>1kHz) and zeros torque output of the motor during the heating process have not been solved. High-frequency AC excitation may be detrimental to the battery because the effect of high-frequency AC excitation on the state of health of the battery is unknown. In addition, although the zero-torque output can be realized by controlling the q-axis current to zero, the torque ripple is still difficult to eliminate in a real-world application. To further solve the above problems, the motor’s neutral conductor is pulled out and connected to a large capacitor to increase the current amplitude of the AC heating at low frequencies.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

Design and Structural Parameters Analysis of the Centrifugal Compressor for Automotive Fuel Cell System Based on CFD Method

2023-04-11
2023-01-0499
Electric centrifugal air compressor is one of the most important auxiliary components for the fuel cell engine, which has great impacts on the system efficiency, cost and compactness. However, the centrifugal compressor works at an ultra-high speed for a long time, which poses a great challenge to the lives of motor, bearing and seal. Therefore, reducing the rotating speed of the impeller and maintaining high pressure ratio and high efficiency are important issues for aerodynamic design of the compressor. In this paper, a centrifugal compressor rotor for a 100kW fuel cell system is designed. Aiming at reducing the rotating speed, the influences of three key structural parameters including inlet blade angle, outlet blade angle and blade outlet radius on performance are investigated. The aerodynamic performance of the compressor is predicted using the Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools.
Technical Paper

Emission Characteristics of a Light Diesel Engine with PNA under Different Coupling Modes of EHC and Aftertreatment System

2023-04-11
2023-01-0268
With the continuous upgrading of emission regulations, NOx emission limit is becoming more and more strict, especially in the cold start phase. Passive NOx absorber (PNA) can adsorb NOx at a relatively low exhaust temperature, electrically heated catalyst (EHC) has great potential to improve exhaust gas temperature and reduce pollutant emissions of diesel engines at cold start conditions, while experimental research on the combined use of these two kinds of catalysts and the coupling mode of the electrically heated catalyst and the aftertreatment system under the cold start condition are lacking. In this paper, under a certain cold start and medium-high temperature phase, the exhaust gas temperature and emission characteristics of PNA, EHC and aftertreatment system under different coupling modes were studied.
Technical Paper

Active Plasma Probing for Lean Burn Flame Detection

2023-04-11
2023-01-0293
Combustion diagnostics of highly diluted mixtures are essential for the estimation of the combustion quality, and control of combustion timing in advanced combustion systems. In this paper, a novel fast response flame detection technique based on active plasma is introduced and investigated. Different from the conventional ion current sensing used in internal combustion engines, a separate electrode gap is used in the detecting probing. Further, the detecting voltage across the electrode gap is modulated actively using a multi-coil system to be slightly below the breakdown threshold before flame arrival. Once the flame front arrives at the probe, the ions on the flame front tend to decrease the breakdown voltage threshold and trigger a breakdown event. Simultaneous electrical and optical measurements are employed to investigate the flame detecting efficacy via active plasma probing under both quiescent and flow conditions.
Technical Paper

Influence of Roof Sensor System on Aerodynamics and Aero-Noise of Intelligent Vehicle

2023-04-11
2023-01-0841
The roof sensor system is an indispensable part of intelligent vehicles to observe the environment, however, it deteriorates the aerodynamic and noise performance of the vehicle. In this paper, large eddy simulation and the acoustic perturbation equation are combined to simulate the flow and sound fields of the intelligent vehicle. Firstly, test and simulation differences of aerodynamic drag and pressure coefficients on the roof and rear of the intelligent vehicle without roof sensor system are discussed. It is found that the difference in aerodynamic drag coefficient is 5.5%, and the pressure coefficients’ differences at 21 out of 24 measurement points are less than 0.05. On this basis, under the influence of the sensor system, the aerodynamic drag coefficient of the intelligent vehicle is increased by 23.4%.
X