Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Rapid assessment of power battery states for electric vehicles oriented to after-sales maintenance

2024-04-09
2024-01-2201
With the continuous popularization of electric vehicles (EVs), ensuring the best performance of EVs has become a significant concern, and lithium-ion power batteries are considered as the essential storage and conversion equipment for EVs. Therefore, it is of great significance to quickly evaluate the state of power batteries. This paper investigates a fast state estimation method of power batteries oriented to after-sales and maintenance. Based on the battery equivalent circuit model and heuristics optimization algorithm, the battery model parameters, including the internal ohmic and polarization resistance, can be identified using only 30 minutes of charging or discharging process data without full charge or discharge. At the same time, the proposed method can directly estimate the state of charge (SOC) and maximum available capacity of the battery without knowing initial SOC information.
Technical Paper

Revealing the Impact of Mechanical Pressure on Lithium-Ion Pouch Cell Formation and the Evolution of Pressure During the Formation Process

2024-04-09
2024-01-2192
The formation is a crucial step in the production process of lithium-ion batteries (LIBs), during which the solid electrolyte interphase (SEI) is formed on the surface of the anode particles to passivate the electrode. It determines the performance of the battery, including its capacity and lifetime. A meticulously designed formation protocol is essential to regulate and optimize the stability of the SEI, ultimately achieving the optimal performance of the battery. Current research on formation protocols in lithium-ion batteries primarily focuses on temperature, current, and voltage windows. However, there has been limited investigation into the influence of different initial pressures on the formation process, and the evolution of cell pressure during formation remains unclear. In this study, a pressure-assisted formation device for lithium-ion pouch cells is developed, equipped with pressure sensors.
Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

Optimization of Cold Start Performance of Diesel Engine Under Low Temperature and High Altitude Environment

2024-04-09
2024-01-2455
The problem of keeping the stable starting performance of diesel engine under high altitude and low temperature conditions has been done a lot of research in the field of diesel engine, but there is a lack of research on extreme conditions such as above 2000 meters above sea level and below 0°C. Aiming at solving the cold start problem of diesel engine in extreme environment, a set of chamber system of cold start environment diesel engine was constructed to simulate environment of 3000m altitude and -20°C. A series of experimental research was conducted on cold start efficiency optimization strategy of a certain type of diesel engine at 3000m altitude and -20°C. In parallel, a diesel engine model was constructed through Chemkin to explore the influence of the three parameters of compression ratio, stroke length, and fuel injection advance angle on the first cold start cycle of diesel engine at 4000m altitude and -20°C.
Technical Paper

Coordinated Longitudinal and Lateral Motions Control of Automated Vehicles Based on Multi-Agent Deep Reinforcement Learning for On-Ramp Merging

2024-04-09
2024-01-2560
The on-ramp merging driving scenario is challenging for achieving the highest-level autonomous driving. Current research using reinforcement learning methods to address the on-ramp merging problem of automated vehicles (AVs) is mainly designed for a single AV, treating other vehicles as part of the environment. This paper proposes a control framework for cooperative on-ramp merging of multiple AVs based on multi-agent deep reinforcement learning (MADRL). This framework facilitates AVs on the ramp and adjacent mainline to learn a coordinate control policy for their longitudinal and lateral motions based on the environment observations. Unlike the hierarchical architecture, this paper integrates decision and control into a unified optimal control problem to solve an on-ramp merging strategy through MADRL.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

Research on the Control Method of Staggered Parallel Boost Structure in Fuel Cell System

2023-10-30
2023-01-7028
Fuel cells’ soft output characteristics and mismatched voltage levels with subordinate electrical devices necessitate the use of DC/DC converters, which are an important part of the power electronic subsystem of the fuel cell system. The staggered parallel Boost topology is commonly employed in fuel cell DC/DC converters. This paper focuses on the control characteristics of the two-phase interleaved parallel Boost topology in the context of a fuel cell system. Specifically, we derive the small-signal model and output-control transfer function of the topology, and design a controller based on frequency characteristic analysis. Our proposed controller uses a cascaded double-ring structure and supports both constant current and constant voltage switching modes. To evaluate the effectiveness of our proposed control strategy, we conduct simulation and prototype testing.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
Technical Paper

Research on Fatigue Damage of Independent Suspension Support Structure for a Commercial Vehicle Based on Load Spectrum of Basic Vehicle

2023-04-11
2023-01-0807
In this paper, an equivalent conversion method is proposed to apply the six-dimensional force road spectrum of the four-axle vehicle on the same platform to the three-axle through the axle load comparison. Further, the feasibility of the devolved equivalent conversion method is verified, and the fatigue performance improvement of the wishbone support structure of a commercial vehicle is finally achieved. Specifically, firstly, the load spectrum at each attachment point of the suspension for the three-axle vehicle is obtained through the iteration of the multi-body dynamic model. Furthermore, the finite element model of the suspension for the three-axle vehicle is established; the analysis of fatigue life for the suspension structure is performed by extracting stress amplitude through the multi-axis cyclic counting method and calculating equivalent force amplitude through McDiarmid’s criterion, combined with the SN curve of the material.
Technical Paper

Experimental Analysis and Dynamic Optimization Design of Hinge Mechanism

2023-04-11
2023-01-0777
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses.
Technical Paper

Research on Low Illumination Image Enhancement Algorithm and Its Application in Driver Monitoring System

2023-04-11
2023-01-0836
The driver monitoring system (DMS) plays an essential role in reducing traffic accidents caused by human errors due to driver distraction and fatigue. The vision-based DMS has been the most widely used because of its advantages of non-contact and high recognition accuracy. However, the traditional RGB camera-based DMS has poor recognition accuracy under complex lighting conditions, while the IR-based DMS has a high cost. In order to improve the recognition accuracy of conventional RGB camera-based DMS under complicated illumination conditions, this paper proposes a lightweight low-illumination image enhancement network inspired by the Retinex theory. The lightweight aspect of the network structure is realized by introducing a pixel-wise adjustment function. In addition, the optimization bottleneck problem is solved by introducing the shortcut mechanism.
Technical Paper

Simplified Modeling of an Innovative Heating Circuit for Battery Pack Based on Traction Motor Drive System

2023-04-11
2023-01-0515
Alternating current (AC) heating is an efficient and homogeneous manner to warm Lithium-ion batteries (LIBs) up. The integrated design of AC heating combined with the motor drive circuit has been studied by many scholars. However, the problems of excessive heating frequency (>1kHz) and zeros torque output of the motor during the heating process have not been solved. High-frequency AC excitation may be detrimental to the battery because the effect of high-frequency AC excitation on the state of health of the battery is unknown. In addition, although the zero-torque output can be realized by controlling the q-axis current to zero, the torque ripple is still difficult to eliminate in a real-world application. To further solve the above problems, the motor’s neutral conductor is pulled out and connected to a large capacitor to increase the current amplitude of the AC heating at low frequencies.
Technical Paper

Motor Stator Modeling and Equivalent Material Parameters Identification for Electromagnetic Noise Calculation

2023-04-11
2023-01-0530
Aiming at the laborious process in motor structure modeling for acoustic noise calculation, an improved stator structure modeling scheme is proposed, which includes stator structure simplification and equivalent material parameters identification. The stator assembly is modeled as a homogeneous solid with the same size as the stator core, and the influence of model simplification is compensated by orthotropic equivalent material parameters. The equivalent material parameters are acquired through an optimization algorithm by minimizing the error between FEM calculated modal frequencies and the modal tested results. With the stator assembly model, the motor assembly model is built, and the constrained modal characteristics of the motor assembly are verified by comparing the modal frequencies to the resonance bands in the vibration acceleration spectrum. Finally, the motor structure model is used to calculate the electromagnetic noise of an induction motor.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

The Multi-Objective Optimization Design of Hard Point Parameters for Double Wishbone Independent Suspension

2023-04-11
2023-01-0127
There are often a large number of design variables and responses in suspension hard point optimization design. The traditional optimization strategy integrating heuristic algorithm and simulation model is not applicable due to its low efficiency. To solve optimization problems with huge number of design variables and responses, a multi-objective optimization framework combined heuristic optimization algorithm with multi-objective decision-making method is developed. Specifically, the multi-objective optimization was performed by dividing the problem into two independent sub-problems of multi-objective optimization and multi-objective decision-making. Further, to reduce the number of sample points required for building a surrogate model, a two-stage multi-objective optimization is proposed.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
X