Refine Your Search

Topic

Search Results

Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

2024-04-09
2024-01-2015
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech.
Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

An Road Boundary Detection Algorithm Based on Radar that Can Improve Multiple-Target Tracking Performance for Autonomous Vehicles on Highway Condition

2023-12-20
2023-01-7042
Radar is playing more and important role in multiple object detection and tracking system due to the fact that Radar can not only determine the velocity instantly but also it is less influenced by environment conditions. However, Radar faces the problem that it has many detection clutter,false alarms and detection results are easily affected by the reflected echoes of road boundary in traffic scenes. Besides this, With the increase of the number of targets and the number of effective echoes, the number of interconnection matrices increases exponentially in joint probability data association, which will seriously affect the real-time and accuracy of high-speed scene algorithms.in the tracking system. So, A method of using millimeter wave radar to detect and fit the boundary guardrail of high-speed road is proposed, and the fitting results are applied to the vehicle detection and tracking system to improve the tracking accuracy.
Technical Paper

Micro Gesture Recognition of the Millimeter-Wave Radar Based on Multi-branch Residual Neural Network

2022-12-22
2022-01-7074
A formal gesture recognition based on optics has limitations, but millimeter-wave (MMW) radar has shown significant advantages in gesture recognition. Therefore, the MMW radar has become the most promising human-computer interaction equipment, which can be used for human-computer interaction of vehicle personnel. This paper proposes a multi-branch network based on a residual neural network (ResNet) to solve the problems of insufficient feature extraction and fusion of the MMW radar and immense algorithm complexity. By constructing the gesture sample library of six gestures, the MMW radar signal is processed and coupled to establish the relationship between the motion parameters of the distance, speed, and angle of the gesture information and time, and the depth features are extracted. Then the three depth features are fused. Finally, the classification and recognition of MMW radar gesture signals are realized through the full connection layer.
Technical Paper

77 GHz Radar Based Multi-Target Tracking Algorithm on Expressway Condition

2022-12-16
2022-01-7129
Multi-Target tracking is a central aspect of modeling the surrounding environment of autonomous vehicles. Automotive millimeter-wave radar is a necessary component in the autonomous driving system. One of the biggest advantages of radar is it measures the velocity directly. Another big advantage is that the radar is less influenced by environmental conditions. It can work day and night, in rainy or snowy conditions. In the expressway scenario, the forward-looking radar can generate multiple objects, to properly track the leading vehicle or neighbor-lane vehicle, a multi-target tracking algorithm is required. How to associate the track and the measurement or data association is an important question in a multi-target tracking system. This paper applies the nearest-neighbor method to solve the data association problem and uses an extended Kalman filter to update the state of the track.
Technical Paper

Rotor Temperature Monitoring and Torque Correction for IPMSM of New Energy Vehicle

2022-10-28
2022-01-7063
As the electric vehicle market grows rapidly, thermal analysis related to the performance of electric drive motors has gained increasing interest. However, it is hard to obtain rotor temperature for torque correction during operation which leads to unexpected inaccurate control of motors. Rotor temperature monitoring and torque correction for IPMSM (Interior Permanent Magnet Synchronous motor) of new Energy vehicles are discussed in this paper. Considering the practical application, a low-order lumped parameter thermal network (LPTN) composed of three nodes is built for calculating the rotor temperature under different operating conditions on a 160kw IPMSM of a three-in-one electric drive. To identify the parameters of LPTN, the measurements were done on a test bench with a prototype of the three-in-one electric drive. K-type thermocouples were used to directly measure the temperature of each node.
Technical Paper

Intelligent Cockpit Operation System: Indirect Rotary Transducer for an Automotive Screen Interface

2022-05-30
2022-01-5034
Indirect rotary transducer for an automotive screen interface is an innovative solution for the smart cockpit. The primary objective of this study is to design an indirect rotary transducer system, and study its feasibility in the smart cockpit. The working theory of this designed system is that the magnetic induction hall electronic chip can detect changes in the magnetic field. Several tests have been conducted, which show that the hypothesis of dangling operating system achieves the same effect as a hard-wired operating system. The results of the experiment indicate that the magnetic induction hall sensor can meet the specification of traditional hard-wired operating system. This system is a good concept for intelligent cab driving, which can fully meet the needs of the current market.
Technical Paper

A Trust Establishment Mechanism of VANETs based on Fuzzy Analytical Hierarchy Process (FAHP)

2022-03-29
2022-01-0142
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks.
Technical Paper

Field Experimental Investigation on Human Thermal Comfort in Vehicle Cabin

2022-03-29
2022-01-0195
A comfortable thermal environment can alleviate fatigue, reduce irritability, and improve driving safety. However, it is rather a challenge to evaluate thermal comfort inside a vehicle due to multifarious geometric and environmental factors as well as human differences. This study conducted a series of field experiments both in summer and winter conditions, measuring the thermal environment parameters inside the compartment and the skin temperature of experimental personnel, and carrying out subjective thermal sensation and comfort questionnaires. The experimental results showed that head and trunk are the most relevant parts of all human body parts to the overall thermal sensation/comfort. For overall thermal sensation, the value of regression R2 referring to head/trunk is 0.691/0.721, while those corresponding to overall thermal comfort is 0.802/0.773.
Technical Paper

Adaptive Sliding Mode Kalman Observer for the Estimation of Vehicle Fuel Cell Humidity

2022-03-29
2022-01-0690
The efficiency and durability of fuel cells are affected by internal water content. Therefore, the active control of humidity is of great significance for vehicle fuel cells, especially for self-humidifying fuel cell systems. To realize fuel cell internal humidity active control, it is necessary to collect the humidity information of stack in real time, so as to carry out feedback control. However, humidity sensor has the characteristics of high cost and low durability, so it is more practical to get the feedback value of humidity by using state estimation method for high-power commercial fuel cell system such as vehicle fuel cell. However, humidity estimation is often affected by other physical or chemical dynamic processes, such as oxygen transportation and response process of electrical appliances. In order to weaken the influence of other physical or chemical dynamic processes on humidity estimation, this paper proposes an adaptive sliding mode Kalman observer (ASMK) algorithm.
Journal Article

Development of a Control System for Permanent Magnet Synchronous Motor Based on LabVIEW and FPGA

2022-03-29
2022-01-0732
With the strict requirements of harmful emission regulations, carbon peaking and neutralization goal, the internal combustion engine (ICE) industry is facing great challenges. Compared with pure ICE powertrain, hybrid powertrain has the advantages on fuel consumption and harmful emissions, which is more suitable for the market today. In series hybrid powertrain, because of the direct mechanical connection between ICE and motor, the motor can be used as an assistant in optimizing the performance of ICE. In order to realize the cycle-based or crank angle-based control of ICE, a high-frequency motor control system need to be built. Field Programmable Gate Array (FPGA) has the characteristics of high calculation frequency and high reliability to meet the demand. At the same time, the ICE control based on LabVIEW and FPGA has been realized.
Technical Paper

Investigation of PEM Fuel Cell Degradation Under On-Off Cyclic Condition

2021-12-31
2021-01-7022
Proton exchange membrane fuel cell (PEMFC) has attracted extensive attention in recent years because of its high efficiency and zero emission. Although fuel cell technology has made great progress, durability is still the bottleneck of its large-scale commercialization. In order to systematically study the degradation of fuel cell system for transportation applications, we selected the most severe operating condition - on-off cyclic condition as the research object, and focused on the influence of cell temperature and air relative humidity on the degradation rate of fuel cell by means of polarization curve, reference voltage and CV. The results show that with the same temperature, the fuel cell performance degradation rate first decreases and then increases with the decrease of humidity, which may be due to the increase of platinum ion transfer rate at high relative humidity and the dry membrane at low relative humidity.
Technical Paper

Improved Joint Probabilistic Data Association Multi-target Tracking Algorithm Based on Camera-Radar Fusion

2021-04-15
2021-01-5002
A Joint Probabilistic Data Association (JPDA) multi-objective tracking improvement algorithm based on camera-radar fusion is proposed to address the problems of poor single-sensor tracking performance, unknown target detection probability, and missing valid targets in complex traffic scenarios. First, according to the correlation rule between the target track and the measurement, the correlation probability between the target and the measurement is obtained; then the measurement collection is divided into camera-radar measurement matched target, camera-only measurement matched target, radar-only measurement matched target, and no-match target; and the correlation probability is corrected with different confidence levels to avoid the use of unknown detection probability.
Technical Paper

Vehicle Detection Based on Deep Neural Network Combined with Radar Attention Mechanism

2020-12-29
2020-01-5171
In the autonomous driving perception task, the accuracy of target detection is an essential evaluation, especially for small targets. In this work, we propose a multi-sensor fusion neural network that combines radar and image data to improve the confidence level of the camera when detecting targets and the accuracy of the prediction box regression. The fusion network is based on the basic structure of single-shot multi-box detection (SSD). Inspired by the attention mechanism in image processing, our work incorporates the a priori knowledge of radar detection in the convolutional block attention module (CBAM), which forms a new attention mechanism module called radar convolutional block attention module (RCBAM). We add the RCBAM into the SSD target detection network to build a deep neural network fusing millimeter-wave radar and camera.
Technical Paper

LiDAR-Based High-Accuracy Parking Slot Search, Detection, and Tracking

2020-12-29
2020-01-5168
The accuracy of parking slot detection is a challenge for the safety of the Automated Valet Parking (AVP), while traditional methods of range sensor-based parking slot detection have mostly focused on the detection rate in a scenario, where the ego-vehicle must pass by the slot. This paper uses three-dimensional Light Detection And Ranging (3D LiDAR) to efficiently search parking slots around without passing by them and highlights the accuracy of detecting and tracking. For this purpose, a universal process of 3D LiDAR-based high-accuracy slot perception is proposed in this paper. First, the method Minimum Spanning Tree (MST) is applied to sort obstacles, and Separating Axis Theorem (SAT) are applied to the bounding boxes of obstacles in the bird’s-eye view, to find a free space between two adjacent obstacles. These bounding boxes are obtained by using common point cloud processing methods.
Technical Paper

State-of-the-Art and Development Trends of Assembly Technologies for Proton Exchange Membrane Fuel Cell Stack: A Review

2020-04-14
2020-01-1175
Proton Exchange Membrane Fuel Cell (PEMFC) uses hydrogen and oxygen for fuel, the whole energy conversion process almost has no negative impact on the environment. The PEM fuel cell stack with the advantages of low-operating temperature, high current density and fast start-up ability is considered to be the next generation of new electric vehicle power. However, due to the limited current output, it is difficult for a single cell to meet the practical application requirements. The actual fuel cell stack is formed by many single cells assembled together. The assembly process is often related to load transfer, material transfer, energy exchange, multi-phase flow, electrochemical reaction and other factors. The performance of MEA (Membrane Electrode Assembly), sealing gaskets and other components will change during the assembly process, which makes the fuel cell stack assembly process more complex.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Investigation of the Operating Conditions on the Water and Thermal Management for a Polymer Electrolyte Membrane Fuel Cell by One-Dimensional Model

2020-04-14
2020-01-0856
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC.
Technical Paper

Drivable Area Detection and Vehicle Localization Based on Multi-Sensor Information

2020-04-14
2020-01-1027
Multi-sensor information fusion framework is the eyes for unmanned driving and Advanced Driver Assistance System (ADAS) to perceive the surrounding environment. In addition to the perception of the surrounding environment, real-time vehicle localization is also the key and difficult point of unmanned driving technology. The disappearance of high-precision GPS signal suddenly and defect of the lane line will bring much more difficult and dangerous for vehicle localization when the vehicle is on unmanned driving. In this paper, a road boundary feature extraction algorithm is proposed based on multi-sensor information fusion of automotive radar and vision to realize the auxiliary localization of vehicles. Firstly, we designed a 79GHz (78-81GHz) Ultra-Wide Band (UWB) millimeter-wave radar, which can obtain the point cloud information of road boundary features such as guardrail or green belt and so on.
X