Refine Your Search

Topic

Search Results

Technical Paper

Vulnerability analysis of DoIP implementation based on model learning

2024-04-09
2024-01-2807
The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Research on the Control Method of Staggered Parallel Boost Structure in Fuel Cell System

2023-10-30
2023-01-7028
Fuel cells’ soft output characteristics and mismatched voltage levels with subordinate electrical devices necessitate the use of DC/DC converters, which are an important part of the power electronic subsystem of the fuel cell system. The staggered parallel Boost topology is commonly employed in fuel cell DC/DC converters. This paper focuses on the control characteristics of the two-phase interleaved parallel Boost topology in the context of a fuel cell system. Specifically, we derive the small-signal model and output-control transfer function of the topology, and design a controller based on frequency characteristic analysis. Our proposed controller uses a cascaded double-ring structure and supports both constant current and constant voltage switching modes. To evaluate the effectiveness of our proposed control strategy, we conduct simulation and prototype testing.
Technical Paper

Research on Air Mass Flow and Pressure Control Method for the Multi-Stack Fuel Cell System Based on Model Predictive Control

2023-10-30
2023-01-7037
The multi-stack fuel cell system (MFCS) has the advantages of higher efficiency, stronger robustness and longer life, and could be widely used in high-power application scenarios such as automobiles, airplanes, trains, and ships. The appropriate air mass flow and air pressure have a crucial impact on the output power performance indicators of the MFCS. Considering that the designed integrated air supply system for the MFCS has significant gas supply hysteresis and strong coupling between the inlet air mass flow and air pressure of each stack, this paper identifies multiple steady-state operating points of the fuel cell system to obtain corresponding linear predictive models and establishes corresponding predictive control algorithms. The Model Predictive Control (MPC) algorithms are switched in real-time based on the current load throughout the entire C-WTVC (China World Transient Vehicle Cycle) working condition.
Technical Paper

Influence of Roof Sensor System on Aerodynamics and Aero-Noise of Intelligent Vehicle

2023-04-11
2023-01-0841
The roof sensor system is an indispensable part of intelligent vehicles to observe the environment, however, it deteriorates the aerodynamic and noise performance of the vehicle. In this paper, large eddy simulation and the acoustic perturbation equation are combined to simulate the flow and sound fields of the intelligent vehicle. Firstly, test and simulation differences of aerodynamic drag and pressure coefficients on the roof and rear of the intelligent vehicle without roof sensor system are discussed. It is found that the difference in aerodynamic drag coefficient is 5.5%, and the pressure coefficients’ differences at 21 out of 24 measurement points are less than 0.05. On this basis, under the influence of the sensor system, the aerodynamic drag coefficient of the intelligent vehicle is increased by 23.4%.
Technical Paper

Object Detection and Tracking Based on Lidar for Autonomous Vehicles on Highway Conditions

2022-12-22
2022-01-7103
Multiple object detection and tracking are central aspects of modeling the environment of autonomous vehicles. Lidar is a necessary component in the autonomous driving system. Without Lidar sensors, we will most probably not see fully self-driving cars become a reality. Lidar sensing gives us high-resolution data by sending out thousands of laser signals. In advanced driver assistance systems or automated driving systems, 3-D point clouds from lidar scans are typically used to measure physical surfaces. Lidar is a powerful sensor that you can use in challenging environments where other sensors might prove inadequate. Lidar can provide a complete 360-degree view of a scene. This paper designs Lidar based multi-target detection and tracking system based on the traditional point cloud processing method including down-sampling, denoising, segmentation, and clustering objects.
Technical Paper

77 GHz Radar Based Multi-Target Tracking Algorithm on Expressway Condition

2022-12-16
2022-01-7129
Multi-Target tracking is a central aspect of modeling the surrounding environment of autonomous vehicles. Automotive millimeter-wave radar is a necessary component in the autonomous driving system. One of the biggest advantages of radar is it measures the velocity directly. Another big advantage is that the radar is less influenced by environmental conditions. It can work day and night, in rainy or snowy conditions. In the expressway scenario, the forward-looking radar can generate multiple objects, to properly track the leading vehicle or neighbor-lane vehicle, a multi-target tracking algorithm is required. How to associate the track and the measurement or data association is an important question in a multi-target tracking system. This paper applies the nearest-neighbor method to solve the data association problem and uses an extended Kalman filter to update the state of the track.
Technical Paper

Research on Collision Avoidance and Vehicle Stability Control of Intelligent Driving Vehicles in Harsh Environments

2022-12-16
2022-01-7128
Aiming at the problems of ineffective collision avoidance and vehicle instability in the process of vehicle emergency braking in road conditions with low adhesion and sudden change in adhesion coefficient, a stability-coordinated emergency braking and collision avoidance control system SEBCACS) is proposed. First, according to the motion of the ego vehicle and the target vehicle as well as the road adhesion conditions, a collision time model is proposed for evaluating the vehicle collision risk, and the expected deceleration required to avoid the collision is calculated. Then, the MPC method is used to calculate the yaw moment generated by the four-wheel braking force required to maintain vehicle stability according to the actual and reference yaw rate and side slip angle deviation. Then it is decided whether to implement additional yaw moment control according to the body stability evaluation results.
Technical Paper

Parameter Analysis and Optimization of Road Noise Active Control System

2022-03-29
2022-01-0313
The parameter setting has a great influence on the noise reduction performance of the road noise active control (RNC) system. This paper analyzes and optimizes the parameters of the RNC system. Firstly, the model of the RNC system is established based on the FxLMS algorithm. Based on this model, taking the maximum noise reduction as the evaluation index, the sensitivity analysis of convergence coefficient, filter order, and reference signal gain was carried out using the Sobol method with the data measured by a real vehicle on asphalt pavement at 40km/h. The results show that there is no significant interaction between the three parameters. Then, using the idea of orthogonal experiment, the simulation results of the control model are analyzed by taking the maximum noise reduction as the evaluation index. It is found that the convergence coefficient has the greatest effect on the maximum noise reduction, followed by the filter order, and the reference signal gain has the least effect.
Technical Paper

Construction and Test of Wireless Remote Control System for Self-Driving Car

2022-03-29
2022-01-0064
Aiming at the test safety problems in the early stage of self-driving cars development, firstly the virtual vehicle on-board CAN data acquisition module of the present project was designed based on virtual LabVIEW. Then a wireless remote control system for the self-driving car was constructed, which integrated the built virtual vehicle on-board CAN data acquisition system, the remote real-time image monitoring module and the remote upper computer control module based on ZigBee wireless transmission. It can execute the environmental awareness training and continuous and complex motion manipulation testing of the vehicle without relying on the driver, which can solve the safety problems in the tests of initial development of self-driving cars. Finally, the four-wheel independent steering electric vehicle was used as the self-driving test vehicle, and the wireless remote control system was tested on the double lane change type path and S-type path.
Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
Technical Paper

NVH Comparative Analysis of 3in1 and 2in1 Electric Drive System Based on Experimental Research

2022-03-29
2022-01-0606
As the key assembly of new energy vehicles, the noise and vibration, and harshness (NVH) performance of integrated electric drive system directly affects the driving quality of new energy vehicles. In this paper, the vibration noise characteristic test of 3in1 electric drive system is carried out in the semi-muffler chamber. In order to compare and analyze the difference between 2in1 and 3in1 electric drive system NVH performance, the power electronics unit (PEU) in the 3in1 system was removed and placed on the ground away from the platform, and vibration noise test was carried out. In order to analyze the difference of NVH performance between 2in1 status and 3in1 status, the PEU in the 3in1 system was removed and placed on the ground far away from the bench, and the NVH test was carried out. The microphone signal at 1m position and the vibration acceleration signal of the key structural surface of the system are measured experimentally.
Journal Article

Development of a Control System for Permanent Magnet Synchronous Motor Based on LabVIEW and FPGA

2022-03-29
2022-01-0732
With the strict requirements of harmful emission regulations, carbon peaking and neutralization goal, the internal combustion engine (ICE) industry is facing great challenges. Compared with pure ICE powertrain, hybrid powertrain has the advantages on fuel consumption and harmful emissions, which is more suitable for the market today. In series hybrid powertrain, because of the direct mechanical connection between ICE and motor, the motor can be used as an assistant in optimizing the performance of ICE. In order to realize the cycle-based or crank angle-based control of ICE, a high-frequency motor control system need to be built. Field Programmable Gate Array (FPGA) has the characteristics of high calculation frequency and high reliability to meet the demand. At the same time, the ICE control based on LabVIEW and FPGA has been realized.
Technical Paper

Anode Pressure Control with Fuzzy Compensator in PEMFC System

2021-04-06
2021-01-0121
Hydrogen safety is of great importance in proton exchange membrane fuel cell (PEMFC) systems. Anode pressure control has become a focus point in recent years. The differential pressure between anode and cathode in PEMFC system needs to be carefully controlled under a suitable threshold. In practice, the anode pressure is usually controlled about 20–30kPa higher than the cathode pressure to minimize nitrogen crossover and improve cell stability. High differential pressure could lead to irreversible damage in proton exchange membrane. PID control was the dominant method to control the anode pressure in the past. However, the anode pressure’s fluctuation when hydrogen mass flow suddenly changes is a long-term challenge. As the requirements of control precision are increasingly high, the traditional PID control needs to be improved. Several new control algorithms are presented in recent researches, however, mostly are theoretical and experimental.
Technical Paper

Control Strategies for Prevention of PEMFC Oxygen Starvation: A Review

2021-04-06
2021-01-0743
Proton Exchange Membrane Fuel Cell (PEMFC) which has advantages of starting fast, high energy density, high efficiency, lower operating temperature and little pollution is widely regarded as one of the most promising energy sources. The PEMFC system includes several subsystems such as air supply subsystem, hydrogen supply subsystem, thermal management subsystem, water management subsystem, energy management subsystem and so on. The Air supply subsystem has great influence on the performance and life of PEMFC stack. Whether oxygen supply in air supply subsystem is sufficient or not will affects reaction rate of fuel, the operating temperature and degradation of PEMFC stack and so on. To solve the issue of oxygen starvation in PEMFC stack, the control strategies for improving dynamic response and preventing air shortage of the PEMFC air supply subsystem are reviewed.
Technical Paper

Effect of Injection Parameters on Particulate Matter Emission in a Direct Injection Gasoline Engine

2021-04-06
2021-01-0628
PN(Particle Number) emission limits are more stringent for gasoline vehicles in Chinese VI emission standards (6×1011 #/km). A EEPS engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, second injection ratio and second injection end time) on particle diameter distribution and particle number density of emission was Investigated. The experimental result indicates that the quantity of particles decrease with the increase of injection pressure obviously, especially at high load including the 20% reduction of the particle number density. When the engine is at low load, the accumulation mode particle emissions are higher than the nucleation mode particle emissions compared with high load, which present opposite results. The second injection can restrain engine knock at low speed.
Technical Paper

Experimental Investigation of Control Strategies on Voltage Inconsistency for Proton Exchange Membrane Fuel Cells

2021-04-06
2021-01-0736
Proton exchange membrane fuel cells (PEMFC) is considered the most promising alternative vehicle power in the future owing to its highly power density and zero carbon emission. However, Voltage inconsistency of PEMFC is an essential issue that influences the performance of a PEMFC. It is affected by flow-rate and relative humidity of the inlet air. It’s necessary to establish a control strategy to ensure air supplied timely. A PEMFC system bench with 30 cells (the cells are numbered 1-30 in the direction from near to far from the air intake port) assembled in series was established to investigate the control strategy of air supply system. According to fuel cell’s position of the lowest voltage and the corresponding air flow rate, there are three different operations as follows. When it appears not in the low numbered area and the air flow rate is high, it indicates that humidity of the cell is insufficient and it needs to reduce power of the blower or close the bypass-valve.
Technical Paper

Optimization of Speed Fluctuation of Internal Combustion Engine Range Extender by a Dual Closed-Loop Control Strategy

2021-04-06
2021-01-0782
With the increasing concern on environmental pollution and CO2 emission all over the world, range-extended electrical vehicle (REEV) has gradually got more attention because it could avoid the mileage anxiety of the battery electrical vehicles (BEV) and get high energy efficiency. Nevertheless, NVH performance of internal combustion engine range extender (ICRE) is a critical problem that affects the driving experiences for REEV. In this paper, a two-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially mounted to run as an ICRE. The ICRE control system was established based on Compact RIO hardware and LabVIEW, who has the functions of the intake throttle PID closed-loop control, autonomous ICRE operation control, and speed PID closed-loop control. In this paper, the gasoline engine was first driven to the idle condition by PMSM in speed-control mode.
X