Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

A Concept of Plasma Assisted Catalyst System Using a DeNOx Catalyst for an Automobile Diesel Engine

2004-06-08
2004-01-1834
Through the basic research of the plasma assisted catalyst system using DeNOx catalysts and the gas analysis of the system, its conceptual use for automobile diesel engine applications has been studied. This study has shown that the length between the plasma reactor and the catalyst reactor does not affect the NOx conversion. To obtain an efficient NOx conversion, the plasma should affect both the HC as the reductant and NOx at the same time. In the case of γ-Al2O3 and C3H6, the main component for NOx reduction was CH3CHO generated by the plasma. Under 250 deg. C, the temperature was too low for the γ-Al2O3 to become effective. Therefore, the NOx conversion became low. At 400 deg. C, the NOx conversion became high. However, at 600 deg. C, the CH3CHO for reducing NOx was not generated, and the NOx conversion decreased.
Technical Paper

Development of a Steer-by-Wire System with Force Feedback Using a Disturbance Observer

2004-03-08
2004-01-1100
This paper presents a method of controlling a steer-by-wire system with force feedback to improve the feel and response of steering. The steering wheel actuator generating the reaction torque on the steering wheel is controlled by the external force applied to the rack. The external force is estimated using a disturbance observer. Stabilization of the system and adjustment of the steering feel are applied to the control of the steering wheel actuator. Experimental results on a test bench show that our steer-by-wire system successfully applies force feedback to achieve desired steering feel and response.
Technical Paper

Carbon Dioxide Measuring Technology in Engine Combustion Chambers

2004-03-08
2004-01-1340
The authors have developed an instrument that measures the CO2 concentration in engine combustion chambers using the infrared absorption method. The characteristics of this technology are as follows: 1 Measuring can be carried out while the engine is running at 600r/min to more than 3000r/min, full load operation. (Applicable to all EGR conditions) 2 Quick response; 2ms 3 High linearity; ±1% Full Scale and under (FS: 10%) 4 No aggravation is caused to the intake/exhaust performance of engines This technology contributes to the improvement of the in-cylinder EGR system using, for instance, a variable valve-timing mechanism that is now expanding in number of applications, and also the conventional EGR system.
Technical Paper

Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature

2001-03-05
2001-01-0655
Recently, the smokeless rich diesel combustion had been demonstrated [1]. This can realize smokeless and NOx-less combustion by using a large amount of cooled EGR under a near stoichiometric and even in a rich operating condition. We focus on the effects of reducing diesel combustion temperature on soot reduction.
X