Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Evaluation of Distinctive Oil Bores in Engine Crankshaft for Friction Reduction Purpose

2023-09-29
2023-32-0160
Internal combustion engines will play an important role in the coming decades, even considering targets of carbon neutrality for a sustainable future. This will be especially true in regions where pure electrified vehicle implementation is not yet practical, or for long-range heavy load transportation purposes, even in regions where BEV infrastructure is well established. HEV/PHEV’s importance and contribution to CO2 emission reduction together with carbon neutral fuels such as hydrogen, e-fuel and biomass fuel etc. will remain crucial regardless of region/transport sectors. In this respect, brake thermal efficiency improvements by friction reduction needs further investigation. This is especially so with the crankshaft bearings’ lubrication system, which can provide as much as 40% of the total mechanical losses in some cases. It is a well-established fact, that plain bearings require a minimum oil flow volume to maintain their real function rather than oil pressure.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 2: Practical Application to Turbocharger)

2023-04-11
2023-01-0412
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low.
Technical Paper

Development of Three-Way Catalysts with Enhanced Cold Performance

2023-04-11
2023-01-0358
Global focus on CO2 reduction and environmental protection is increasing. To comply with stricter exhaust gas regulations and reduce real world emissions, it is becoming increasingly important to improve the performance of three-way catalysts. Therefore, highly efficient conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) is required. In general, the more active the precious metals used, the better the conversion performance. However, precious metals have supply risks, such as price fluctuation and the uneven distribution of production areas. Therefore, it is necessary to lower emissions while also lowering the amount of precious metals used. This paper focuses on how catalysts are used and describes the development of a new three-way catalyst for the purpose of strengthening cold conversion and decreasing the usage of precious metals.
Technical Paper

Development of 50% Thermal Efficiency S.I. Engine to Contribute Realization of Carbon Neutrality

2023-04-11
2023-01-0241
To prevent global warming, many countries are making efforts to reduce CO2 emissions toward achieving 2050 carbon neutrality. In order to reduce CO2 concentration quickly, in addition to spread of renewable energy and expansion of BEV, it is also important to reduce CO2 emissions by improving thermal efficiency of ICE (internal combustion engine) and utilizing carbon neutral fuels such as synthetic fuels and biofuels. It is well known that lean burn is an effective technology to increase thermal efficiency of engine highly. However, since NOx emission from lean burn engine cannot be reduced with three-way catalyst, there have been issues such as complicated system configuration due to the addition of NOx reduction catalyst or limiting lean operation to narrow engine speed and load in order to meet emission regulation of each country.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
Journal Article

Development of Air Supply Controller for FCV Based on Model-Based Development Approach

2021-04-06
2021-01-0742
In Toyota’s 2nd generation FCV, an electric turbo-type air compressor has been adopted for downsizing and cost reduction. Automotive Fuel Cell applications present several challenges for implementing a turbo-type air compressor. When operating a fuel cell in high-temperature or high-altitude locations, the FC stack must be pressurized to prevent dry-up. The flow rate vs pressure conditions that the FC must pass through or in some cases operate at are typically within the surge region of a turbo-type air compressor. Additionally, Toyota requires quick air transient response (< 1 sec) for power generation, energy management, and FC dry-up prevention. If the turbo-type air compressor is not precisely controlled during quick transients, it can easily enter the surge region.
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Development of New Hybrid Transaxle for Mid-Size Sports Utility Vehicles

2020-04-14
2020-01-0850
Toyota has developed a new Hybrid (HV) transaxle P810 for Mid-Size SUVs to improve fuel efficiency and power performance. The transaxle was developed based on Toyota's new development strategy - Toyota New Global Architecture (TNGA). By adopting technologies to shorten overall length of the transaxle, installation into the same engine compartment of Mid-Size sedans have been realized while also improving the motor output. This paper will introduce technologies regarding the new mount structure for shortening overall length, and furthermore, noise reduction related to this mount structure.
Journal Article

Improving Winter Fuel Economy by Using Weather Information

2020-04-14
2020-01-1241
When the air conditioning (A/C) is turned on, the intake air to the HVAC is cooled at the evaporator. This is not only used for cooling the air temperature but also to dehumidify. Therefore, for a typical automatic climate control system, A/C will automatically operate even in winter (cold ambient temperature conditions) in order to prevent the windows from fogging despite its effect on fuel economy. In some applications, a humidity sensor is installed on top of the windshield and when the probability of fogging is low the A/C operation is disabled automatically to prevent unnecessary compressor operation which can increase fuel consumption. However, humidity sensor is not widely adopted as it requires some space to be installed and the cost is relatively expensive compared with other HVAC equipped sensors. In this study, a system was invented that disables the compressor operation when the fogging probability is low without using the conventional humidity sensor.
Technical Paper

Development of Three-Way Catalyst with Advanced Coating Layer

2020-04-14
2020-01-0653
Further improvements in catalyst performance are required to help protect the atmospheric environment. However, from the viewpoint of resource availability, it is also necessary to decrease the amount of precious metals used at the active sites of the catalyst. Therefore, a high-performance three-way catalyst with an advanced coating layer has been developed to lower the amount of precious metal usage. Fuel efficiency improvement technologies such as high compression ratios and a large-volume exhaust gas recirculation (EGR) generally tend to increase the ratio of hydrocarbons (HC) to nitrogen oxides (NOx) in exhaust gas. This research focused on the palladium (Pd) loading depth in the coating layer with the aim of improving the hydrocarbon (HC) conversion activity of the catalyst.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Technical Paper

Fatigue Life Prediction Method for Self-Piercing Rivets Considering Crack Propagation

2019-04-02
2019-01-0531
This paper describes a numerical prediction method for fatigue strength of Self Piercing Rivets (SPRs) using fracture mechanics. Recently, high strength steels and non-ferrous metals have been adopted to light weight automotive bodies. Various types of joining are proposed for multi-material bodies. It is important to predict the fatigue life of these joints using numerical simulation. However, the fatigue strength of these joints is related to sheet thickness, base materials, and loading conditions. Therefore, a large number of coupon tests are necessary to determine the S-N curve for the fatigue life prediction of joints in the automotive body. To reduce the amount of coupon testing, numerical simulation will be an efficient method in obtaining the S-N curve of these joints. The fatigue fracture process consists of two stages, crack initiation and crack growth. There are many studies about crack growth estimation methods using stress intensity factor.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Technical Paper

New Method to Achieve High Hydraulic Pressure and Improved Gear Pump Performance in Active Height Control (AHC) System

2019-04-02
2019-01-0854
Vehicle weight reduction is becoming more and more important as increasingly stringent fuel economy regulations are introduced around the world. This development improved the hydraulic gear pump performance of the next-generation Active Height Control (AHC) suspension and achieved significant weight reduction of 5 kg by eliminating the auxiliary pump accumulator. To realize the necessary high-pressure with a high flow rate, the sealing performance of the pump at the tips of the gear teeth is very important. This was achieved by developing “breaking-in” technology that shaves away the aluminum housing using the gear teeth and creates zero clearance between the teeth tips and the housing. To reduce the frictional loss torque of the pump, which was identified as an issue of this technology, it was necessary to completely shave away the initial clearance in the breaking-in process.
Journal Article

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Technical Paper

Development of New Continuously Variable Transmission for 2.0-Liter Class Vehicles

2018-04-03
2018-01-1062
Toyota has developed a new continuously variable transmission (CVT) called "Direct Shift-CVT" which is for 2.0-liter class vehicles. This CVT provided not only power transmission by a metal belt held with a conventional pulley but also additional gear mechanism. This CVT is developed to improve fuel efficiency, acceleration characteristic, and quietness. At this CVT, the startup low gear ratio is achieved by gear mechanism and the power is switched by clutches. Since the belt-pulley portion can be realized to be wide range by using only high gear ratio range, the input load into belt-pulley portion is reduced and unprecedented compact and high efficient belt-pulley portion is established. Consequently, the high efficiency in all fields from startup acceleration to high speed driving is achieved to improve fuel efficiency.
X