Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Technical Paper

Preview Ride Comfort Control for Electric Active Suspension (eActive3)

2014-04-01
2014-01-0057
This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Improvement of Vehicle Dynamics Based on Human Sensitivity (Second Report) -A Study of Cornering Feel-

2007-04-16
2007-01-0447
Vehicle body movements that occur during cornering have a strong influence on the evaluation of ride and handling. As a first step, we analyze subjective comments from trained drivers and find that the sense of vision played a major part in cornering feel. As a result of quantitative evaluations, we hypothesize that smaller time lag between roll angle and pitch angle made cornering feel better. We perform a human sensitivity evaluation, which confirmed this hypothesis. Given this result, we derive analytical equations for the roll center kinematics and the damping characteristics, in order to find a theoretical condition for the time lag of 0sec (giving a good cornering feel). We verify this by experiment.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Development of Vehicle Dynamics Integrated Management

2006-04-03
2006-01-0922
We have developed a new vehicle dynamics control system that is based on a new concept and uses a new hydraulic modulator. The new algorithm, which reflects the concept and hydraulic modulator, can control a vehicle not only in emergency but also in normal driving situation. This results in excellent vehicle controllability.
Technical Paper

Analysis of Vehicle Stability After Releasing the Accelerator in a Turn

2005-04-11
2005-01-0411
Vehicle stability after releasing the accelerator during limit cornering (from now on “Tuck-in”) is the behavior that the turning radius of a vehicle gets smaller after releasing the accelerator. This paper presents that the main factors of yaw moment variation by releasing the accelerator are the change of lateral forces due to longitudinal transfer of normal loads, lateral shift of vehicle center of gravity due to vehicle roll and tire lateral deflection, and the change of lateral forces due to deceleration. It also shows that roll stiffness distribution and longitudinal acceleration have an influence through the formulation of turning radius ratio.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Toyota's U340E Four-speed Automatic Transaxle

2000-03-06
2000-01-1147
TOYOTA has designed a new family of automatic transaxles named the “Super ECT”. These are the next generation of automatic transaxles (AT), for FWD passenger cars. The aim of this development was compactness, lightness, and improvements in fuel economy and shift quality. There are several kinds of transaxles included in this group to match each of the FWD passenger cars and engines. The “U340E,” a four-speed automatic transaxle, has been developed as one member of this family. This is one of the most compact and light AT in its class, and has greatly contributed to the fuel economy of vehicles. This paper will give an overview of the “Super ECT” and the major features and performance of the U340E.
Technical Paper

Development of Ductile Cast Iron Flywheel Integrated with Hot Form-Rolled Gear

1998-02-01
980568
New ductile cast iron flywheel integrated with gear and its manufacturing process were developed to reduce the manufacturing steps and cost compared with conventional flywheel around which a steel ring gear is fit. In this process, the ring gear teeth around a cast iron flywheel are formed directly in net shape and free from any defect by the hot form-rolling method, followed by the thermomechanical treatment in a short time. The gear is superior to that made by the conventional hobbing and heat treatment in accuracy, strength and anti-wear property.
Technical Paper

Handling Analysis with Vehicle Dynamics Simulator

1997-02-24
971058
We have developed a vehicle test system called the Vehicle Dynamics Simulator (VDS). The system measures the handling characteristics in a transient state in the laboratory. The automobile suspensions are moved as on a road with the machine providing relative motion by force transducer platform beneath each tire. The detailed measurements of transitive motions and forces given to the wheel clarify the kinematics and compliance characteristics contributed to the good handling performance and stability. This paper presents the system introduction and the results of analyzing the suspensions characteristics by the new analytical technique for breaking down into a variety of compliance components in a transient state.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

1996-02-01
960487
Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
X