Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Prediction Technique for the Lubricating Oil Temperature in Manual Transaxle

1999-03-01
1999-01-0747
A prediction technique for the lubricating oil temperature in a manual transaxle was developed. Using this technique, the effects of heat transfer enhancement and heat generation decrease, etc., on the oil temperature reduction can be estimated. The heat generation in a manual transaxle is caused by lubricating oil stirring, friction and gear meshing. The heat transfer and flow characteristics are thus very complicated under the two-phase flow of the oil and air induced by rotating gears. It is necessary for the development of the prediction technique to model the heat transfer process in a manual transaxle. The experiments measuring of heat generation, heat flux and the air flow velocity distribution around the manual transaxle were conducted to get information for modeling the heat transfer process. A flow visualization of two-phase flow in the manual transaxle was also conducted.
Technical Paper

Regeneration Capability of Diesel Particulate Filter System Using Electric Heater

1993-03-01
930365
Regeneration capability of a wall-flow monolith type diesel paticulates filter with an electric heater was studied. To prevent filter crack generation and unburned particulates accumulation, a precision controller was added to the test equipment to reduce thermal load. In order to control the supply of oxygen to potentially prevent cracking, a second air feeder was also added. Furthermore, to ignite the accumulated particulates uniformly and propagate extensively to burn accumulated particulates completely a newly improved heater unit was employed. Repeated regeneration tests were conducted with cars on a chassis dynamometer. Though crack generation and unburned particulates accumulation were reduced considerably, satisfactory prevention could not be achieved. Therefore a parameter study using regenerative burning and thermal stress analysis model was carried out.
X