Refine Your Search

Topic

Author

Search Results

Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Development of an Analytical Method for Rear Differential Gear Whine Noise Utilizing Principal Component Contribution by OTPA and CAE

2019-06-05
2019-01-1555
The progress of vehicle electrification has reduced engine noise and the improvement of rear differential gear whine noise has become more important for customer satisfaction. Rear differential gear whine noise is a result of the vibration generated by the transmission error of the gears transmitted to the cabin from various paths. As several components have a contribution, identifying key paths to develop an effective countermeasure becomes time consuming. Operational transfer path analysis (OTPA) is one of the TPA methods to determine the main path and contributing part using only the operational data. However, in cases where many reference points are set on the same frame or body, the contribution becomes similar because of high correlation between the reference data set. As a result, finding the main transfer path becomes difficult.
Technical Paper

Effects of the Feature Extraction from Road Surface Image for Road Induced Noise Prediction Using Artificial Intelligence

2019-06-05
2019-01-1565
Next generation vehicles driven by motor such as electric vehicles and fuel cell vehicles have no engine noise. Therefore the balance of interior noise is different from the vehicles driven by conventional combustion engine. In particular, road induced noise tends to be conspicuous in the low to middle vehicle speed range, therefore, technological development to reduce it is important task. The purpose of this research is to predict the road induced noise from the signals of sensors adopted for automatic driving for utilizing the prediction result as a reference signal to reduce road induced noise by active noise control (ANC). Using the monocular camera which is one of the simplest image sensors, the road induced noise is predicted from the road surface image ahead of the vehicle by machine learning.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Technical Paper

Using the Modal Response of Window Vibrations to Validate SEA Wind Noise Models

2017-06-05
2017-01-1807
The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
Journal Article

An Application of Shape Optimization to Brake Squeal Phenomena

2015-09-27
2015-01-2658
The present paper describes an application of non-parametric shape optimization to disc brake squeal phenomena. A main problem is defined as complex eigenvalue problem in which the real part of the complex eigenvalue causing the brake squeal is chosen as an objective cost function. The Fre´chet derivative of the objective cost function with respect to the domain variation, named as the shape derivative of the objective cost function, is evaluated using the solution of the main problem and the adjoint problem. A selection criterion of the adoptive mode number in component mode synthesis (CMS), which is used in the main problem, is presented in order to reduce the computational error in complex eigenvalue pairs. A scheme to solve the shape optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. For an application of the optimization method, a numerical example of a practical disc brake model is presented.
Journal Article

A Study on Trigger of Disc Brake Squeal Generation

2015-09-27
2015-01-2682
It is well known that disc brake squeal is often caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under small disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes a study on trigger of disc brake squeal generation. First, the development of experimental set-up for disc brake squeal basic research and experimental results are described. Second, the equation of motion in disc brake squeal is derived and the vibration induced by small disturbance are analyzed. Furthermore, kinetic energy increase per 1 cycle in minute vibration are calculated, which represents the influence of friction and wear between disc and pad with caliper.
Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Technical Paper

Combustion Noise Analysis of Premixed Diesel Engine by Engine Tests and Simulations

2014-04-01
2014-01-1293
When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise.
Technical Paper

An Experimental Set Up Development for Brake Squeal Basic Research

2013-09-30
2013-01-2032
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Structural Design Technology for Brake Squeal Reduction Using Sensitivity Analysis

2010-10-10
2010-01-1691
The finite element method (FEM) is effective for analyzing brake squeal phenomena. Although FEM analysis can be used to easily obtain squeal frequencies and complex vibration modes, it is difficult to identify how to modify brake structure design or contact conditions between components. Therefore, this study deals with a practical design method using sensitivity analysis to reduce brake squeal, which is capable of optimizing both the structure of components and contact conditions. A series of analysis processes that consist of modal reduction, complex eigenvalue analysis, sensitivity analysis and optimization analysis is shown and some application results are described using disk brake systems.
Technical Paper

A Study on Friction Materials for Brake Squeal Reduction by Nanotechnology

2008-10-12
2008-01-2581
Brake squeal is caused by dynamic instability, which is influenced by its dynamic unstable structure and small disturbance of friction force variation. Recently, FE Analysis of brake squeal is applied for brake design refinements, which is based on dynamic instability theory. As same as the refinement of brake structure is required for brake squeal reduction, the refinement of pad materials is also required for brake effectiveness and brake squeal reduction. It is well known that friction film, which is composed of polymers like phenol formaldehyde resin and so on, influences for friction coefficient. Therefore it is expected that the refinement of polymers in pad materials enable higher brake effectiveness and less brake squeal. In this paper, Molecular Dynamics is applied for the friction force variation of polymers in pad materials. The MD simulation results suggest the reduction method of friction force variation of polymers.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

Analysis of Rotational-Angle Difference Between Gears for Gear Noise Under Transient State Using Hilbert Transform

2005-04-11
2005-01-1832
The authors developed a useful analysis method of the rotational-angle of gear under transient state using the Hilbert Transform because the conventional method was not available under the transient state. Here, under the transient state the gear revolution speed was changed from 600r/min to 2000r/min in 0.35 seconds. A key technology of this method was that Hilbert Transform method, which used to be applicable only for steady data was improved so that it could treat transient data. Hence, the following procedures were developed. 1. The rotation of gear-teeth was detected by a gap-sensor pair, which can cancel the measuring error due to fluctuation of gear shaft. 2. The frequency of such signals varied significantly by the gear-revolution speed. Transient gear-teeth detection signals obtained at a constant sampling rate were converted to almost-constant frequency signals over the data series axis using a trigger pulse obtained per gear revolution.
Technical Paper

Analysis of Vehicle Stability After Releasing the Accelerator in a Turn

2005-04-11
2005-01-0411
Vehicle stability after releasing the accelerator during limit cornering (from now on “Tuck-in”) is the behavior that the turning radius of a vehicle gets smaller after releasing the accelerator. This paper presents that the main factors of yaw moment variation by releasing the accelerator are the change of lateral forces due to longitudinal transfer of normal loads, lateral shift of vehicle center of gravity due to vehicle roll and tire lateral deflection, and the change of lateral forces due to deceleration. It also shows that roll stiffness distribution and longitudinal acceleration have an influence through the formulation of turning radius ratio.
X