Refine Your Search

Topic

Author

Search Results

Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

Preview Ride Comfort Control for Electric Active Suspension (eActive3)

2014-04-01
2014-01-0057
This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Improvement of Vehicle Dynamics Based on Human Sensitivity (Second Report) -A Study of Cornering Feel-

2007-04-16
2007-01-0447
Vehicle body movements that occur during cornering have a strong influence on the evaluation of ride and handling. As a first step, we analyze subjective comments from trained drivers and find that the sense of vision played a major part in cornering feel. As a result of quantitative evaluations, we hypothesize that smaller time lag between roll angle and pitch angle made cornering feel better. We perform a human sensitivity evaluation, which confirmed this hypothesis. Given this result, we derive analytical equations for the roll center kinematics and the damping characteristics, in order to find a theoretical condition for the time lag of 0sec (giving a good cornering feel). We verify this by experiment.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Development of Vehicle Dynamics Integrated Management

2006-04-03
2006-01-0922
We have developed a new vehicle dynamics control system that is based on a new concept and uses a new hydraulic modulator. The new algorithm, which reflects the concept and hydraulic modulator, can control a vehicle not only in emergency but also in normal driving situation. This results in excellent vehicle controllability.
Technical Paper

Development of Pitting Resistant Steel for Gears

2006-04-03
2006-01-0895
Newly designed gears are subject to higher loads that demand a steel that is capable of greater pitting resistance. The application of shot peening to gears has been increasing to improve tooth root strength, but pitting resistance had not been necessarily high. This study examines the effect of alloying additions mainly on tempering resistance and the formation of a non-martensitic layer. The developed high Si-Mo type steel shows excellent pitting resistance, even in shot peened gears, as compared to that of conventional steels due to high tempering resistance and the thin, uniform non-martensitic layer. This new steel is of practical use in some multi-speed automatic transmission gears.
Technical Paper

Analysis of Vehicle Stability After Releasing the Accelerator in a Turn

2005-04-11
2005-01-0411
Vehicle stability after releasing the accelerator during limit cornering (from now on “Tuck-in”) is the behavior that the turning radius of a vehicle gets smaller after releasing the accelerator. This paper presents that the main factors of yaw moment variation by releasing the accelerator are the change of lateral forces due to longitudinal transfer of normal loads, lateral shift of vehicle center of gravity due to vehicle roll and tire lateral deflection, and the change of lateral forces due to deceleration. It also shows that roll stiffness distribution and longitudinal acceleration have an influence through the formulation of turning radius ratio.
Technical Paper

Development of Non-Lead-Added Free-Cutting Steel for Automobile Parts

2004-03-08
2004-01-1527
A new, free-cutting steel, hereafter referred to as “non-lead-added free-cutting steel”, has been developed with the intention of replacing currently applied lead containing free cutting steel. The ultimate goal of this project is to provide a new lead-free steel grade that will contribute to the removal of environmentally harmful substances from automobile parts. In this project, we have targeted the development of a material that would demonstrate levels of machinability and other mechanical properties equivalent to those of the conventional free-cutting steel to which sulfur (S), lead (Pb) and calcium (Ca) or combinations, thereof have been added. The fine dispersion of sulfide, modified by adding Mg and Ca, is most effective in enhancing the chip breakability that would otherwise deteriorate due to the absence of lead. The practical application of the non-lead-added free-cutting steel has rendered the goal of total removal of lead from special steel products highly obtainable.
Technical Paper

Development of Multi-Layer Plastic Membrane (Bladder Membrane) for Vapor Reducing Fuel Tank

2001-03-05
2001-01-1120
The Vapor Reducing Fuel Tank System (Bladder Tank System) using a flexible plastic membrane (Bladder Membrane) was newly developed in order to reduce the amount of vaporized gasoline in a steel fuel tank. This Bladder Membrane is flexible to expand in proportion to a fuel volume and prevents the permeation of the vaporized gasoline. As a result of our initial study for various materials, we decided to apply a multi-layer plastic material which could achieve both low fuel permeability and good flexibility. This multi-layer material consists of polyethylene(PE) for structural material and polyamide(PA) for low permeability. The modulus of the PE needs to achieve a sufficient flexibility in order to keep the movement of the membrane. While PA material must have not only low fuel permeability but also strong adhesion with the structural material of PE. We also clarify the membrane design to keep a good flexibility and to reduce a strain.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

Development of P/M Titanium Engine Valves

2000-03-06
2000-01-0905
In October 1998, a new mass-produced car with titanium engine-valves was released from TOYOTA Motor Corporation. Both intake and exhaust valves were manufactured via a newly developed cost-effective P/M forging process. Furthermore, the material which was specially designed for the exhaust one is a unique titanium metal matrix composite (MMC). This paper discusses the materials and manufacturing methods used. The tensile, fatigue strength and creep resistance of the MMC are always superior to those for the typical heat-resistant steel of 21-4N. Both valves have achieved sufficient durability and reliability with a manufacturing cost acceptable for mass-produced automobile parts.
Technical Paper

Anti-Shudder Mechanism of ATF Additives at Slip-Controlled Lock-Up Clutch

1999-10-25
1999-01-3616
The anti-shudder effect of ATF additives and their mechanisms have been investigated. Anti-shudder durability was evaluated using an automatic transmission (AT) on an engine stand under continuously slip-controlled condition. The addition of over-based Ca-sulfonate and friction modifier (FM) remarkably improved the anti-shudder durability of ATF. The surface roughness of the contact area (contact area roughness) of the clutch plates was measured by an electron probe surface roughness analyzer. To evaluate the boundary frictional properties of the adsorbed film formed, the friction coefficient of the clutch plates in the absence of oil was examined after the anti-shudder durability test. It was found that shudder occurrence was strongly correlated with the contact area roughness and the boundary frictional property of the steel plate surface. Large contact area roughness and low boundary friction were preferred to prevent shudder.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
X