Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Fuel Spray Simulation of Slit Nozzle Injector for Direct-Injection Gasoline Engine

2002-03-04
2002-01-1135
In direct-injection (DI) gasoline engines, spray characteristics greatly affect engine combustion. For the rapid development of new gasoline direct-injectors, it is necessary to predict the spray characteristics accurately by numerical analysis based on the injector nozzle geometry. In this study, two-phase flow inside slit nozzle injectors is calculated using the volume of fluid method in a three-dimensional CFD. The calculation results are directly applied to the boundary conditions of spray calculations, of which the submodels are recently developed to predict spray formation process in direct injection gasoline engines. The calculation results are compared with the experiments. Good agreements are obtained for typical spray characteristics such as spray shape, penetration and Sauter mean diameter at both low and high ambient pressures. Two slit nozzle injectors of which the slit thickness is different are compared.
Technical Paper

Development of TOYOTA Reflex Burn (TRB) System in DI Diesel

1990-02-01
900658
In order to optimize air-fuel mixture formation in a small DI diesel engine, studies were conducted into the effects of combustion chamber shape and fuel spray impingement. Based on the findings of these studies, the shape of the combustion chamber was modified to induce complex air motion with high turbulence and fuel injection was carefully controlled to achieve optimum impingement intensity. As a result, the mixture formation process was greatly improved with a consequent gain in terms of engine performance. To clarify the reasons for this improvement in combustion, a three-dimensional calculation of the in-cylinder air motion was made. The behaviour of the spray and flame was observed using an endoscope. The new combustion system, named TOYOTA Reflex Burn system (TRB) thus developed has been adopted in production engines since August 1988.
X