Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Reducing Vehicle Glass Sensitivity to Turbulent Pressure

2021-08-31
2021-01-1125
Vehicle interior wind noise is typically managed through the overall exterior geometry of the vehicle, mirror shape and mounting location, sealing features and glass thickness and damping. Prior research has distinguished between contribution of fluctuating pressure due to air turbulence as compared to acoustic pressure to a passenger vehicles exterior at highway speeds. Because of the large difference in propagation speed between turbulent and acoustic pressure for on-road passenger vehicles, the structural response of the glass to turbulent versus acoustic pressure is not the same. The acoustic coincidence frequency of door glass is typically in the 2-3 kHz range. Turbulent coincidence frequency is much lower, and the effective transmission loss (TL) of the glass depends on the mix of turbulent and acoustic pressure on the exterior surface of the glass.
Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Journal Article

Effects of Moving Ground and Rotating Wheels on Aerodynamic Drag of a Two-Box Vehicle

2018-04-03
2018-01-0730
Previous studies and recent practical aerodynamic evaluations have shown that aerodynamic drag of passenger vehicles with “ground simulation” with moving ground and rotating wheels may increase in some cases and decrease in other cases relative to the fixed ground and stationary wheel conditions. Accordingly, the effects of the ground simulation on the aerodynamic drag should be deeply understood for further drag reduction. Although the previous studies demonstrated what is changed by the ground simulation, the reason for the change has not been fully understood. In this article, the effects of wheels and wheel houses attachment and those by the ground simulation with ground movement and wheel rotation on the aerodynamic drag were investigated by quantification of the underfloor flow that plays a crucially important role on the formation of vortical structure around vehicles.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

Using the Modal Response of Window Vibrations to Validate SEA Wind Noise Models

2017-06-05
2017-01-1807
The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
Journal Article

Conceptual Development of a Multi-Material Composite Structure for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1334
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
Technical Paper

Road Tests of the Acoustic Loads on the Back Panels of a Pickup Truck

2016-04-05
2016-01-1300
Road tests on a pickup truck have been conducted to determine the acoustic loads on the back panel surfaces of the vehicle. Surface mounted pressure transducers arrays are used to measure both the turbulent flow pressures and the acoustic pressures. These measurements are used to determine the spatial excitation parameters used in an SEA model of the transmission loss through the back panel surfaces. Comparisons are made between tests on different road surfaces and at different speeds to identify the relative contributions of acoustic and wind noise.
Technical Paper

Yellowing in Automotive Clearcoats

2016-04-05
2016-01-0538
Automotive clearcoats have many purposes, from providing a glossy finish to protecting the underlying paint layers from UV radiation. Yellowing of clearcoats is a natural phenomenon during weathering processes, as well as from extreme baking conditions, due to polymer degradation. However, occasionally yellowing may be caused by unexpected chemical reactions occurring in the clearcoat. These reactions may happen very quickly (within hours or days) or take years to manifest, as other chemicals migrate into the clearcoat. We have investigated one family of these unexpected reactions which occur with certain UV absorbers, as well as how to prevent the reactions from occurring. We found that certain benzotriazole UV absorbers react readily with some common metals, including copper and zinc, provided that the UV absorber is not in its excited state. The conformational change that occurs within the benzotriazole when it absorbs UV radiation effectively inhibits the reaction with metals.
Technical Paper

Development of Robust Anti-chipping Performance Primer for Various Application Process Conditions

2016-04-05
2016-01-0536
Chipping performance of body paint on a vehicle has become increasingly important in harsher climates such as North America and Russia. Stones can cause body paint to chip down to substrate and expose bare metal, which can then lead to corrosion. The primer layer serves not only as the adhesion promoter between metal substrate and topcoat, but also secures overall chipping performance of the coating system. The benefits of a softer body primer have been established and described in Bock and Engbert’s SAE paper “Waterborne Polyurethane Based Paint Materials for the Automotive Industry - Present Situation and Future Possibilities - ,”[1], however, the challenge exists in accommodating various application process conditions.
Technical Paper

Engine Oil Formulation Technology to Prevent Pre-ignition in Turbocharged Direct Injection Spark Ignition Engines

2015-09-01
2015-01-2027
Engine oil formulation is known to affect low speed pre-ignition (LSPI), which creates technical restrictions on downsized turbocharged engines. Calcium, which is used to ensure detergency and anti-rust performance, is reported to increase LSPI events. Therefore, new formulation technologies are needed to satisfy both LSPI prevention performance and other conventional performance areas. The authors focused on two approaches: enhancement of LSPI prevention performance by adding a booster component and substitution of calcium for a less reactive component to balance performance areas including LSPI prevention. We have verified the effectiveness of these approaches by increasing the dosage of molybdenum used as a friction modifier as well as replacing calcium detergent with a magnesium detergent. These formulation strategies can be applicable for future ILSAC GF-6 engine oil, where a specification for LSPI prevention performance is expected to be implemented.
Technical Paper

Friction Reduction Effect of the New Concept Bearing with Partial Twin Grooves in Cold Condition

2015-09-01
2015-01-2038
Engine friction reduction is an effective means to improve fuel consumption. Fluid friction reduction of main bearing is examined for engine friction reduction in cold condition. As one of the examinations, it was focused on low temperature of lubricating oil in the early stage during engine cold start. In hydrodynamic lubrication, the oil film temperature is maintained by balance between heat generation and heat transfer. The heat generation is generated by shear of lubricating oil. The factors of the heat transfer, the following elements are considered as follows, A) The heat transfer to a crank shaft, B) The heat transfer to a bearing, C) The heat transfer by convection. If the heat generation is constant, oil film temperature is increased by reduction of heat transfer. It is considered that the reduction of oil leakage and reduction of the heat transfer by convection is equivalent.
Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Journal Article

Development of Full-Scale Wind Tunnel for Enhancement of Vehicle Aerodynamic and Aero-Acoustic Performance

2014-04-01
2014-01-0598
A new wind tunnel was developed and adopted by Toyota Motor Corporation in March 2013. This wind tunnel is equipped with a 5-belt rolling road system with a platform balance that enables the flow simulation under the floor and around the tires in on-road conditions. It also minimizes the characteristic pulsation that occurs in wind tunnels to enable the evaluation of unsteady aerodynamic performance aspects. This paper describes the technology developed for this new wind tunnel and its performance verification results. In addition, after verifying the stand-alone performance of the wind tunnel, a vehicle was placed in the tunnel to verify the utility of the wind tunnel performance. Tests simulated flow fields around the vehicle in on-road conditions and confirmed that the wind tunnel is capable of evaluating unsteady flows.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

Study of Cooling Drag Reduction Method by Controlling Cooling Flow

2014-04-01
2014-01-0679
As the demand for improved fuel economy increases and new CO2 regulations have been issued, aerodynamic drag reduction has become more critical. One of the important factors to consider is cooling drag. One way to reduce cooling drag is to decrease the air flow volume through the front grille, but this has an undesirable impact on cooling performance as well as component heat load in the under-hood area. For this reason, cooling drag reduction methods while keeping reliability, cooling performance and component heat management were investigated in this study. At first, air flow volume reduction at high speed was studied, where aerodynamic drag has the greatest influence. For vehicles sold in the USA, cooling specification tends to be determined based on low speed, while towing or driving up mountain roads, and therefore, there may be extra cooling capacity under high speed conditions.
Technical Paper

The World's First Transverse 8-Speed Automatic Transmission

2013-04-08
2013-01-1274
We have developed the world's first 8-speed automatic transmission for transverse FWD/4WD vehicles. The aim of this new automatic transmission was to achieve world-class fuel economy while offering both smooth gear shift and sporty shift feeling suitable for luxury cars. This has been accomplished using wide spread gear ratio, outstanding low drag components and highly efficient hydraulic control system. In addition, we have achieved the compactness similar to current 6-speed automatic transmission by adopting new gear train and compact clutch layout. In this paper, the detail of this automatic transmission is introduced.
Journal Article

FAME Blended Diesel Fuel Impacts on Engine/Vehicle Systems

2011-08-30
2011-01-1944
The impact of fatty acid methyl ester (FAME) blended diesel fuel on engine/vehicle systems was comprehensively investigated by vehicle, laboratory and engine tests. In this study, 20% FAME blended fuel (B20) was mainly used and soy bean oil methyl ester (SME) was primarily selected as the FAME. Vehicle testing with long-term fuel storage in vehicle fuel tanks was conducted, considering the most severe conditions in market use. Laboratory and engine tests were also conducted to better understand the vehicle test results. In the vehicle test, engine startability, idle roughness and fuel injection control were evaluated using nine vehicles with plastic or metal fuel tanks. All vehicles showed no problems up to 7 months. While five vehicles with plastic fuel tank did not show any problems throughout the test period up to 18 months, four vehicles with metal fuel tanks experienced malfunctions in engine start or fuel injection control following 8, 13, 13 and 18 months respectively.
X