Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
Technical Paper

Development of High-Pressure Hydrogen Storage System for New FCV

2021-04-06
2021-01-0741
This paper describes the high-pressure hydrogen storage system developed for new FCV. With the aim of further popularizing FCVs, this development succeeded in improving the performance of the system and reducing costs. This new storage system consists of multiple tanks of different sizes, which were optimized to store the necessary amount of hydrogen without sacrificing the interior space of the vehicle. The new tanks achieved one of the highest volume efficiencies in the world by adopting high-strength carbon fiber, developed in conjunction with the carbon fiber manufacturer, and by optimizing the layered construction design which allowed the amount of carbon fiber to be reduced. To increase the amount of available hydrogen, the longer high pressure tanks were mounted under the vehicle floor unlike the previous model. This was accomplished by the following two measures: First, individual design and manufacturing measures for the tanks were adopted.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Journal Article

Super High Transfer Efficiency Application for Body Coating

2020-04-14
2020-01-0901
In order to achieve the Toyota Environmental Challenge of 2050 (zero CO2 emissions), we have developed an innovative coating system that achieves more than 95% transfer efficiency. In order to reduce paint loss in the painting process, it is necessary to eliminate overdust and bounce dust. The most important point is how to spray (atomization, particle flight, adhesion) without shaping air. We have developed a “super high transfer efficiency system” that eliminates the need for shaping air. We continue to challenge the development of innovative technologies to view the paint shop as clean and eco-friendly environment.
Technical Paper

Development of TLP-AI Technology to Realize High Temperature Operation of Power Module

2019-04-02
2019-01-0607
Application of SiC power devices is regarded as a promising means of reducing the power loss of power modules mounted in power control units. Due to those high thermostable characteristics, the power module with SiC power devices are required to have higher operating temperature than the conventional power module with Si power devices. However, the limitations of current packaging technology prevent the utilization of the full potential of SiC power devices. To resolve these issues, the development of device bonding technology is very important. Although transient liquid phase (TLP) bonding is a promising technology for enabling high temperature operation because its bonding layer has a high melting point, the characteristics of the TLP bonding layer tend to damage the power devices. This paper describes the development of a bonding technology to achieve high temperature operation using a stress reduction effect.
Journal Article

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Technical Paper

Theory of Collision Avoidance Capability in Automated Driving Technologies

2018-04-03
2018-01-0044
This paper proposes a theory to analyze the collision avoidance capability of automated driving technologies. The theory gives answers to a fundamental question whether automated vehicles fall into extreme conditions at all rather than another question how a vehicle reacts under extreme conditions (is it as safe as driver?). The theory clarifies the following matters: There are two types of hazards to cause collisions, cognitive hazards and behavioral hazards. Cognitive hazards are handled by controlling the upper limit speed of the automated vehicle including when stopped. There are two methods for handling behavioral hazards, preparation and response. The response known well is the coping method activated when the hazard is detected in the dynamic (operational) level. The preparation is the coping method operating at all time in the semantic (tactical) level.
Technical Paper

Development of a New 6-Speed FWD Manual Transmission

2018-04-03
2018-01-0392
Environmental awareness has increased on a global scale which pushed for a heavier demand for weight reduction and high transmission efficiency on manual transmissions (hereafter referred to as the “MT”) in improving vehicle driving and fuel economy performance. Comfortable shift feel is also continuously in demand by the customer because its sensitive performance can be directly recognized by the driver which may determine the transmission’s merchantability. The newly developed 6-speed MT (hereafter referred to as the “6MT”) has achieved size reduction (compact size), weight reduced, better fuel efficiency, and improvement in the shift feel which will continue to maintain its’ competitiveness in the future.
Technical Paper

Development of CFD Inverse Analysis Technology Targeting Heat or Concentration Performance Using the Adjoint Method and Its Application to Actual Components

2018-04-03
2018-01-1033
To resolve two major problems of conventional CFD-based shape optimization technology: (1) dependence of the outcome on the selection of design parameters, and (2) high computational costs, two types of innovative inverse analysis technologies based on a mathematical theory called the Adjoint Method were developed in previous studies for maximizing an arbitrary hydrodynamic performance aspect as the cost function: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape. Furthermore, these technologies were extended to transient flows by the application of the transient Adjoint Method theory. However, there are many cases around flow path shapes in vehicles where performance with respect to heat or concentration, such as the total amount of heat transfer or the flow rate of a specific gas component, is very important.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
X