Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Development of Vehicle Power Connector Equipped with Outdoor Power Outlet Using Vehicle Inlet of Plug-In Hybrid Vehicle

2013-04-08
2013-01-1442
After the Great East Japan Earthquake on March 11, 2011, Toyota Motor Corporation received considerable public response regarding the role of vehicles in emergencies from a large number of customers. These included comments about the usefulness of the electricity supply system in the Estima Hybrid during the long power outages caused by the earthquake. In response, Toyota decided to install this system in its other hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). This system is capable of supplying power up to 1,500 watts, which means that it can be used to operate virtually every household electrical device. Since the engine starts automatically when the main battery capacity is depleted, a single vehicle can supply the daily power needs of a normal house in Japan for about four days, providing that the battery is fully charged and the fuel tank is full.
Technical Paper

Development of Vibration Reduction Motor Control for Series-Parallel Hybrid System

2006-04-03
2006-01-1125
In hybrid electric vehicles, engine starting and stopping occur frequently to provide better fuel economy. Specifically, the structure of the series-parallel hybrid system transmits engine torque pulsations to the driving wheels during engine starting and stopping, which may degrade the quality of the ride. In addition, the quick response of the electric motor can easily cause drivetrain vibration. This paper presents a motor control system for a series-parallel hybrid vehicle designed to reduce these vibrations. The proposed motor control system consists of two parts; one controller functions to compensate the engine torque pulsation during engine starts, and the other controller functions to control torsional vibration of the propeller shaft and drive shaft generated by rapid increases or decreases in driving torque. The proposed vibration reduction motor control method was added to the motor controller on the first rear wheel drive hybrid vehicle (Lexus GS450h).
X