Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessment of Dilution Options on a Hydrogen Internal Combustion Engine

2023-08-28
2023-24-0066
The hydrogen internal combustion engine is a promising alternative to fossil fuel-based engines, which, in a short time, can reduce the carbon footprint of the ground transport sector. However, the high heat release rates associated with hydrogen combustion results in higher NOx emissions. The NOx production can be mitigated by diluting the in-cylinder mixture with air, Exhaust Gas Recirculation (EGR) or water injected in the intake manifold. This study aims at assessing these dilution options on the emissions, efficiency, combustion performance and boosting effort. These dilution modes are, at first, compared on a single cylinder engine (SCE) with direct injection of hydrogen in steady state conditions. Air and EGR dilutions are then evaluated on a corresponding 4-cylinder engine by 0D simulation on a complete map under NOx emission constraint.
Technical Paper

Ultra-High Fuel Pressure in GDI to Suppress Particulate Formation during Warming-Up and Load Transients

2023-04-11
2023-01-0239
This study investigates if particulates from a GDI engine can be significantly suppressed by use of ultra-high injection pressures under 2 different engine conditions known to be associated with high particulate numbers (PN): warm-up and transients. Experiments were carried out in a single-cylinder GDI engine equipped with an endoscope connected to a high-speed camera to enable combustion visualization. To mimic the warming-up, the coolant temperature was varied between 20 °C and 90 °C. A Diesel injector with modified nozzle was used and the injection pressures were varied between 400 and 1500 bar. The results revealed that increasing the fuel injection pressure decreased engine out HC and PN under warming-up conditions. However, the coolant water temperature was the most dominant factor affecting the emissions. For coolant temperature of 20 °C, the use of 1500 bar fuel injection pressure in comparison to lower fuel pressures resulted in significantly lower PN.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Experimental and Numerical Investigation on Hydrogen Internal Combustion Engine

2021-09-05
2021-24-0060
Hydrogen may be used to feed a fuel cell or directly an internal combustion engine as an alternative to current fossil fuels. The latter option offers the advantages of already existing hydrocarbon fuel engines - autonomy, pre-existing and proven technology, lifetime, controlled cost, existing industrial tools and short time to market - with a very low carbon footprint and high tolerance to low purity hydrogen. Hydrogen is expected to be relevant for light and heavy duty applications as well as for off road applications, but currently most of research focus on small engine and especially spark ignition engine which is easily adaptable. This guided us to select modern high-efficient gasoline-based engines to start the investigation of hydrogen internal combustion engine development. This study aims to access the properties and limitations of hydrogen combustion on a high-efficiency spark ignited single cylinder engine with the support of the 3D-CFD computation.
Technical Paper

Research in OFDM-Based High-Speed In-Vehicle Network Connectivity for Cameras and Displays

2021-04-06
2021-01-0151
Growing trends of connected and autonomous vehicles have pushed for increased resolutions of cameras to 8Mpix and displays to 4K/8K, leading to requirements for high-speed interfaces that support 10Gbps and beyond. Unlike data center or enterprise networks which normally operates under controlled indoor environments, in-vehicle networks are required to operate in harsh temperature and interference environments. Due to cost restrictions, the use of single pair wire is prevalent for in-vehicle networks. In general, as data transmission speed increase, signal spectrum spreads across greater frequency range. Since insertion loss of a channel increases in proportion to signal frequency, it becomes more difficult to secure SNR (signal-to-noise ratio) margins as bit rate increases. This makes it increasingly difficult for a device (e.g. ECUs, sensors, and displays) with high-speed communication interface to meet EMC (electromagnetic compatibility) criteria imposed by automotive OEMs.
Technical Paper

Dynamically Adjustable LiDAR with SPAD Array and Scanner

2021-04-06
2021-01-0091
An important function of an Automated Driving (AD) system is to detect objects including vehicles and pedestrians on the road. Typical devices for detecting those objects include cameras, millimeter-wave RADAR, and light detection and ranging (LiDAR). LiDAR uses the flight time of a short-wavelength electromagnetic wave. Because of that LiDAR is expected to find even small objects such as tire fragments on a road in high resolution. The detection performance required for LiDAR depends on the operational design domain (ODD). For example, while a vehicle is travelling at high speeds, LiDAR needs to detect apparently small objects at long distances, and while it is travelling at low speeds, LiDAR has to detect objects over a wide angular range. Conventional LiDAR is developed to satisfy all requirements, providing performance including detection distance, resolution, and angle of view tends to expose issues such as cost and size when it is mounted onboard.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Journal Article

Zero-Day Attack Defenses and Test Framework for Connected Mobility ECUs

2021-04-06
2021-01-0141
Recent developments in the commercialization of mobility services have brought unprecedented connectivity to the automotive sector. While the adoption of connected features provides significant benefits to vehicle owners, adversaries may leverage zero-day attacks to target the expanded attack surface and make unauthorized access to sensitive data. Protecting new generations of automotive controllers against malicious intrusions requires solutions that do not depend on conventional countermeasures, which often fall short when pitted against sophisticated exploitation attempts. In this paper, we describe some of the latent risks in current automotive systems along with a well-engineered multi-layer defense strategy. Further, we introduce a novel and comprehensive attack and performance test framework which considers state-of-the-art memory corruption attacks, countermeasures and evaluation methods.
Technical Paper

System Architecture Design Suitable for Automated Driving Vehicle: Hardware Configuration and Software Architecture Design

2021-04-06
2021-01-0073
Our L2-automated driving system enabling a driver to take his/her hands off from the steering wheel is self-operating on a highway, allowing the vehicle to automatically change lanes and overtake slow-speed leading vehicles. It includes an OTA function, which can extend the ODD after the market launch. To realize these features in reasonably safer and more reliable ways, system architecture must be designed well under hardware and software implementation constraints. One such major constraint is the system must be designed to make the most out of the existing sensor configuration on the vehicle, where five peripheral radars and a front camera for ADAS as well as panoramic-view and rear-view cameras for monitoring are available. In addition, four LiDARs and a telephoto camera are newly adopted for ADS. Another constraint is the system must consist of reliable redundant components for fail-safe operation.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Model Based Control for Premixed Charge Compression Ignition Diesel Engine

2020-04-14
2020-01-1150
Premixed charge compression ignition (PCCI) combustion is effective in reducing harmful exhaust gas and improving the fuel consumption of diesel engines [1]. However, PCCI combustion has a problem of exhibiting lower combustion stability than diffusive combustion [2, 3], which makes it challenging to apply to mass production engines. Its low combustion stability problem can be overcome by implementing complicated injection control strategies that account for variations in environmental and engine operating conditions as well as transient engine conditions, such as turbocharging delay, exhaust gas recirculation (EGR) delay, and intake air temperature delay. Although there is an example where the combustion mode is switched according to the intake O2 fraction [4], it requires a significant number of engineering-hours to calibrate multiple combustion modes. And besides, such switching combustion modes tends to have a risk of discontinuous combustion noise and torque.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

Study of Simple Detection of Gasoline Fuel Contaminants Contributing to Increase Particulate Matter Emissions

2020-04-14
2020-01-0384
The reduction of particulate emissions is one of the most important challenges facing the development of future gasoline engines. Several studies have demonstrated the impact of fuel chemical composition on the emissions of particulate matter, more particularly, the detrimental effect of high boiling point components such as heavy aromatics. Fuel contamination is likely to become a critical issue as new regulations such as Real Driving Emissions RDE involves the use of market fuel. The objective of this study is to investigate several experimental approaches to detect the presence of Diesel contamination in Gasoline which is likely to alter pollutant emissions. To achieve this, a fuel matrix composed of 12 fuels was built presenting diesel fuel in varying concentrations from 0.1 to 2% v/v. The fuel matrix was characterized using several original techniques developed in this study.
Technical Paper

Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low-Octane Gasoline Fuel

2019-09-09
2019-24-0069
Increasing the internal combustion engine efficiency is necessary to decrease their environmental impact. Several combustion systems demonstrated the interest of low temperature combustion to move toward this objective. However, to ensure a stable combustion, the use of additives has been considered in a several studies. Amongst them, 2-Ethylhexyl nitrate (EHN) is considered as a good candidate for these systems but characterizing its chemical effect is required to optimize its use. In this study, its promoting effect (0.1 - 1% mol.) on combustion has been investigated experimentally and numerically in order to better characterize its behavior under different thermodynamic and mixture. Rapid compression machine (RCM) experiments were carried out at equivalence ratio 0.5 and pressure 10 bar, from 675 to 995 K. The targeted surrogate fuel is a mixture of toluene and n-heptane in order to capture the additive effect on both cool flame and main ignition.
Technical Paper

Numerical and Experimental Investigation into Brake Thermal Efficiency Optimum Heat Release Rate for a Diesel Engine

2019-09-09
2019-24-0109
According to thermodynamic analysis of ideal engine cycles, Otto cycle thermal efficiency exceeds that of the Diesel and Sabathe (or Dual) cycles. However, zero-dimensional calculations indicated that the brake thermal efficiency (BTE) of an actual Otto or Diesel engine could be higher with a Sabathe (or Seilliger) type cycle, within a limited peak firing pressure (PFP). To confirm these results with an actual engine, a three-injector combustion system (center and two sides) was utilized to allow more flexibility in the heat release rate (HRR) profile than the conventional single injector system in the previous study. The experimental result was qualitatively consistent with the calculated results even though its HRR had less peak and longer duration than ideal. In this study, a new thermodynamic cycle with higher HRR in the expansion stroke than the ideal Sabathe cycle, was thus developed. The proposed (higher) HRR was achieved by overlapped fuel injection with the three injectors.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Effects of the Feature Extraction from Road Surface Image for Road Induced Noise Prediction Using Artificial Intelligence

2019-06-05
2019-01-1565
Next generation vehicles driven by motor such as electric vehicles and fuel cell vehicles have no engine noise. Therefore the balance of interior noise is different from the vehicles driven by conventional combustion engine. In particular, road induced noise tends to be conspicuous in the low to middle vehicle speed range, therefore, technological development to reduce it is important task. The purpose of this research is to predict the road induced noise from the signals of sensors adopted for automatic driving for utilizing the prediction result as a reference signal to reduce road induced noise by active noise control (ANC). Using the monocular camera which is one of the simplest image sensors, the road induced noise is predicted from the road surface image ahead of the vehicle by machine learning.
Technical Paper

Analysis of Tribofilm Formed by Electric Brush Sliding for Long Life Starter Motor

2019-04-02
2019-01-0181
Global exhaust emission regulations are becoming stricter, and vehicles equipped with the idle stop system (ISS) are increasing. Recently, starters for vehicles equipped with ISS are required to improve operation feel when speedily restarted. To satisfy this demand, starters must rotate at higher rotational speeds, and heavier wear in their brushes may cause problems. Tribofilm formed on commutators surface by the brush sliding is an important factor in the brush commutator wear, because tribofilm is said to have a property to increase lubricity and decrease mechanical wear in brushes and commutator, as well as to improve commutation and decrease arc wear. Therefore, for reducing brush commutator wear, it is considered effective to promote film formation by improving materials. However, few researches have been conducted to evaluate the relationship between brush materials and tribofilm formation.
Technical Paper

High Resolution LiDAR Based on Single Chip SPAD Array

2019-04-02
2019-01-0119
It is important that Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (AD) detect on-road objects, road vehicles and pedestrians. The typical detection devices mounted on ADAS and AD include a camera, a millimeter-wave radar and a Light Detection And Ranging (LiDAR). Since LiDAR can obtain accurate distance and fine spatial resolution due to its short wavelength, it is expected that small objects such as a tire can be detected. However, the conventional LiDAR is equipped with multiple light transmitters and light receivers such as avalanche photo diodes. This causes LiDAR system to be expensive and large in size. Aiming to reduce the cost and size of LiDAR, we employed Single-Photon Avalanche Diode (SPAD) which can be fabricated by CMOS process and easily arrayed. We also developed “Single Chip SPAD Array“ in which the two-dimensional array of SPAD and a signal processing block of range calculation were integrated into a single chip.
Technical Paper

Ignition and Soot Formation/Oxidation Characteristics of Compositionally Unique International Diesel Blends

2019-04-02
2019-01-0548
With the global adoption of diesel common rail systems and the wide variation in composition of local commercial fuels, modern fuel injection systems must be robust against diverse fuel properties. To bridge the knowledge gap on the effects of compositional variation for real commercial fuels on spray combustion characteristics, the present work quantifies ignition and soot formation/oxidation in three unique, international diesel blends. Schlieren imaging, excited-state hydroxyl radical (OH*) chemiluminescence imaging and diffused back-illumination extinction imaging were employed to quantify vapor penetration, ignition, and soot formation and oxidation for high-pressure sprays in a constant-volume, pre-burn chamber. The three fuels were procured from Finland, Japan and Brazil and have cetane numbers of 64.1, 56.1 and 45.4, respectively.
X