Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Impact of Octane Number on Fuel Efficiency of Modern Vehicles

2013-10-14
2013-01-2614
Fuel quality, including antiknock rating, plays a critical role in enabling optimal operation of advanced gasoline engines. As new designs introduced into the market implement technologies to improve fuel efficiency, the overall octane level of the gasoline pool may need to be increased to ensure optimal performance. Turbocharging, higher compression ratios and downsized displacement all lead to higher combustion pressures and temperatures that make engines more susceptible to knocking. All modern gasoline engines are equipped with knock sensors that detect abnormal combustion resulting from autoignition caused by insufficient octane quality. The ability of an engine to account for the use of lower octane fuel by retarding spark timing and enriching air-fuel ratio to reduce knock is limited, and engine efficiency is directly and adversely impacted when the use of lower octane gasoline is accommodated, resulting in higher fuel consumption.
Journal Article

Research on Unregulated Emissions from an Alcohols-Gasoline Blend Vehicle Using FTIR, HPLC and GC-MS Measuring Methods

2013-04-08
2013-01-1345
Unregulated emissions have become an important factor restricting the development of methanol and ethanol alternative alcohols fuels. Using two light-duty vehicles fuelled with pure gasoline, gasoline blend of 10% and 20% volume fraction of ethanol fuels, gasoline blend of 15% and 30% volume fraction of methanol fuels, New European Driving Cycle (NEDC) emission tests were carried on a chassis dynamometer according to ECE R83-05. High performance liquid chromatography (HPLC), Gas chromatography - Mass spectrometry (GC-MS), Fourier transform infrared spectrometer (FTIR) were used to measure methanol, formaldehyde, acetaldehyde, acetone, benzene, toluene, xylene, ethylene, propylene, 1,3-butadiene and isobutene emissions in the exhaust during the NEDC.
Technical Paper

High Efficiency and Low Pollutants Combustion: Gasoline Multiple Premixed Compression Ignition (MPCI)

2012-04-16
2012-01-0382
A new combustion mode namely multiple premixed compression ignition (MPCI) for gasoline engines was proposed. The MPCI mode can be realized by two or more times gasoline injections into cylinder with a high pressure around the compression TDC and featured with a premixed combustion after each injection in the cylinder, which is different from the existed gasoline direct injection compression ignition (GDICI) modes such as homogeneous charge compression ignition (HCCI) mode with gasoline injection occurred in intake stroke, and partially premixed compression ignition (PPCI) mode with multiple gasoline injections in intake and compression strokes before the start of combustion (SOC). Therefore the spray and combustion of the MPCI mode are alternatively occurred as "spray-combustion-spray-combustion" near the TDC, rather than "spray-spray-combustion" sequence as traditional PPCI gasoline engines.
X