Refine Your Search

Topic

Search Results

Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
Journal Article

Modeling and Verification of Tire Nonlinearity Effect on Accuracy of Vehicle Yaw Rate Calculation

2023-04-11
2023-01-0753
The desired yaw rate is a vital target parameter for vehicle stability control, which is currently determined as a steady-state yaw rate by the linear single-track vehicle model. Tire nonlinearity deteriorates the effect of vehicle stability control at larger lateral acceleration. This paper proposes a new calculation method of the steady-state yaw rate considering the tire nonlinearity based on the brush tire model. To validate and verify the proposed method, step steering tests of the target vehicle under different lateral accelerations are carried out on a real proving ground. The results show that when the lateral acceleration is relatively small, the difference between the calculation results of the proposed method and the traditional one is not apparent, and both methods can provide a good estimation for the steady-state yaw rate; however, when the lateral acceleration is relatively large, the difference becomes apparent.
Journal Article

Refinements of the Dynamic Inversion Part of Hierarchical 4WIS/4WID Trajectory Tracking Controllers

2023-04-11
2023-01-0907
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
Technical Paper

Road Rough Estimation for Autonomous Vehicle Based on Adaptive Unscented Kalman Filter Integrated with Minimum Model Error Criterion

2022-03-29
2022-01-0071
The accuracy of road input identifiaction for autonomous vehicles (AVs) system, especially in state-based AVs control for improving road handling and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely and effectively acquire road rough information and chose the reasonable road-based control algorithm become a hot topic in both academia and industry. Uncertainty is unavoidable for AVs system, e.g., varying center of gravity (C.G.) of sprung mass, controllable suspension damping force or variable spring stiffness. To tackle the above mentioned, this paper develops a novel observer approach, which combines unscented Kalman filter (UKF) and Minimum Model Error (MME) theory, to optimize the estimation accuracy of the road rough for AVs system. A full-car nonlinear model and road profile model are first established.
Technical Paper

High-Power Synchronous Rectification Drive Power System Based on PID Control

2022-03-29
2022-01-0720
The driving power system can be combined with lasers, lights, etc., and applied to automobiles to achieve various functions. Under the general trend of the development of intelligent vehicles, people have higher and higher requirements for the accuracy and power of various equipment. However, as power increases, how to ensure the stability of factors such as current is a challenging problem. Therefore, it is extremely important to study and design a high-power drive system in this paper, so as to ensure a stable output of the current. The system is composed of power supply, load, secondary power supply and control chip. The choice of power supply and load is conventional model. The secondary power supply adopts step-down circuit, with synchronous rectifier chip, which can effectively reduce energy consumption, and with temperature protection device, which can ensure the safe and reliable operation of equipment.
Technical Paper

Trajectory Following Control for Automated Drifting of 4WID Vehicles

2022-03-29
2022-01-0911
It is very significant for autonomous vehicles to have the ability to operate beyond the stable handling limits, which plays a vital role in vehicles’ active safety and enhances riding and driving pleasure. For traditional vehicles, it is rather difficult to control the longitudinal speed, sideslip angle and yaw rate simultaneously when drifting along a given trajectory because they are under-actuated. Nevertheless, for a 4-wheel-independent-drive (4WID) vehicle, it is possible and controllable thanks to its over-actuated characteristics. This article designs a trajectory following control strategy for automated drifting of 4WID vehicles. First, a double-track 7 degree of freedom (7DOF) vehicle dynamic model is established, which incorporates longitudinal and lateral load transfer and considers nonlinear tire models. The controller which proposes a hierarchical architecture is then designed.
Journal Article

Lap Time Optimization and Path Following Control for 4WS & 4WID Autonomous Vehicle

2022-03-29
2022-01-0376
In contrast to a normal vehicle, a 4-wheel steer (4WS) and 4-wheel independent drive (4WID) vehicle provides more flexibilities in vehicle dynamic control and better handling performance, since both the steer angle and drive torque of each wheel can be controlled. However, for motorsports, how much lap time can be improved with such a vehicle is a problem few discussed. So, this paper focuses on the racing line optimization and lap time improvement for a 4WS &4WID vehicle. First, we optimize the racing line and lap time of three given circuits with the genetic algorithm (GA) and interior-point method, and several objective functions are compared. Next, to evaluate the lap time improvement of 4WS & 4WID, a detailed vehicle dynamic model of our 4WS & 4WID platform vehicle is built in Carsim. To follow the racing line, a path following controller which contains a PID speed controller and a model predictive control (MPC) yaw rate controller is built.
Technical Paper

Torque Vectoring Control Strategies for Distributed Electric Drive Formula SAE Racing Car

2021-04-06
2021-01-0373
This paper presents a two-layer torque vectoring control strategy for the Formula SAE racing car of Tsinghua University to enhance steering response, lateral stability and track performance. Firstly, the dynamic model of the existing FSAE car is built as parameters of tires, suspensions, motors and aerodynamics are measured and identified. Secondly, this paper develops a two-layer torque vectoring strategy, the upper-layer direct yaw moment (DYC) controller and the lower-layer torque distribution controller are developed in Simulink. The upper-layer sliding mode control DYC controller calculates the target additional yaw moment according to the target yaw rate based on the two-degree-of-freedom (2DOF) reference model, and the sideslip angle is constrained as well.
Technical Paper

New Control Method of Four-Wheel Independent Driving Electric Vehicles for Anti-Slip Purpose

2020-04-14
2020-01-1420
The performance of electric vehicles could be enhanced by more flexible drivetrain configurations combined with advanced control methods. Based on four wheel independent driving and front and rear axle modular steering configuration, which was proposed by our research group last year, the problem of slippery under close-to-limit conditions are further discussed and simulated. A new torque vectoring method based on obtainable parameters and variables in real driving situations is introduced to reduce the sideslip when turning on low friction surfaces or with high speed. This method is developed from a comprehensive index, which reflects the stability and maneuverability, by adding additional torques when stability could not be compensated enough by basic torque vectoring. Besides, an improvement of adding a simu-Torsen differential mechanism is made to the model of the vehicle, which enables another control method with the same purpose as before.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

Decision Making and Trajectory Planning for Lane Change Control Inspired by Parallel Parking

2020-04-14
2020-01-0134
Lane-changing systems have been developed and applied to improve environmental adaptability of advanced driver assistant system (ADAS) and driver comfort. Lane-changing control consists of three steps: decision making, trajectory planning and trajectory tracking. Current methods are not perfect due to weaknesses such as high computation cost, low robustness to uncertainties, etc. In this paper, a novel lane changing control method is proposed, where lane-changing behavior is analogized to parallel parking behavior. In the perspective of host vehicle with lane-changing intention, the space between vehicles in the target adjacent lane can be regarded as dynamic parking space. A decision making and path planning algorithm of parallel parking is adapted to deal with lane change condition. The adopted algorithm based on rules checks lane-changing feasibility and generates desired path in the moving reference system at the same speed of vehicles in target lane.
Technical Paper

Multi-Objective Optimization Design of Hybrid Material Bumper for Pedestrian Protection and Crashworthiness Design

2020-04-14
2020-01-0201
In vehicle accident, the bumper beam generally requires high stiffness for sufficient survival space for occupants while it may cause serious pedestrian lower extremity injuries. The aim of this study is to promote an aluminum-steel hybrid material double-hat bumper to meet the comprehensive requirements. The hybrid bumper is designed to improve the frontal crash and pedestrian protection performances in collision accidents. Finite element (FE) models of the hybrid bumper was built, validated, and integrated into an automotive model. The Fixed Deformable Barrier (FDB) and Transport Research Laboratory (TRL) legform model were used to obtain the vehicle crashworthiness and pedestrian lower leg injury indicators. Numerical results showed that the hybrid bumper had a great potential for crashworthiness performance and pedestrian protection characteristics. Based on this, a multi-objective optimization design (MOD) was performed to search the optimal geometric parameters.
Technical Paper

New CEC Gasoline Direct Injection Fuels Test - Comparison of Deposits and Spray Performance from New and Used Injectors

2019-11-21
2019-28-2392
The use of deposit control additives in European market gasoline is well documented for maintaining high levels of engine cleanliness and subsequent sustained fuel and emissions performance. Co-ordinating European Council (CEC) industry fuels tests have played a crucial role in helping to drive market relevant, effective and low-cost deposit control additives into European market fuels. Until now, there hasn’t been a Gasoline Direct Injection engine test available to fuel marketers in any market globally. However, a new CEC engine test is currently being developed to address that gap. Based on an in-house VW injector coking test, it shows promise for becoming a useful tool with which to develop and measure the performance of deposit control additives. A key requirement of industry tests should be to replicate issues seen in consumer vehicles, thereby providing a platform for relevant solutions.
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

Attitude Control of the Vehicle with Six In-Wheel Drive and Adaptive Hydro Pneumatic Suspensions

2019-04-02
2019-01-0456
The ability of actively adjusting attitude provides a great advantage for those vehicles used in special environments such as off-road environment with extreme terrains and obstacles. It can improve vehicles’ stability and performance. This paper proposes an attitude control system for realizing the active attitude adjustment and vehicle motion control in the same time. The study is based on a vehicle with six wheel independent drive and six independent suspensions (6WIDIS), which is a kind of unmanned vehicle with six in-wheel drives and six independent hydro pneumatic suspensions. With the hydro- pneumatic suspensions, the vehicle’s attitude can be actively adjusted. This paper develops a centralized- distributed control strategy with attitude information obtained by multi-sensor fusion, which can coordinate the complex relationship among the six wheels and suspensions. The attitude control system consists of three parts.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

Using Shoulder Bolster and Knee Bolster to Achieve Protection Effect Comparable to Seatbelt and Airbag

2018-04-03
2018-01-1170
Seatbelt and airbags provide effective occupant restraint, but are also potential to induce intrusive deformation and submarining injuries in motor vehicle crashes. To address these issues, this study puts forward a new restraint concept that applies restraint loads on shoulders and knees/femurs, i.e., the sturdiest regions of human body, via a combined use of shoulder bolster and knee bolster based on biomechanical computational analysis. The load characteristics of the two bolsters were optimized to obtain protection effectiveness superior to conventional use of seatbelt and airbag. Occupant kinematics and kinetics were taken into account, including the excursions of head, shoulders and knees, the accelerations of head and chest, and the compressions of thorax on several locations on the ribcage. The injury risk of rib fractures was monitored based on the strain levels of ribcage.
X