Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

The Effect of Ceria Content on the Performance of a NOx Trap

2003-03-03
2003-01-1160
A study was performed on a lean NOx trap in which the loading of a ceria-containing mixed oxide in the washcoat was varied. After a mild stabilization of the traps, the time required to purge the NOx trap generally increased with increasing amount of mixed oxide. The purge NOx release also increased with increasing mixed oxide level but was greatly diminished after thermal aging. The sulfur tolerance of the NOx trap improved as the mixed oxide content was increased from 0% to 37%. The sample with 0% mixed oxide was more difficult to desulfate than the other samples due to poor water-gas-shift capability. After thermal aging, the NOx reduction efficiency on a 60 second lean/5 second rich cycle was highest for the samples with 0% to 37% mixed oxide at evaluation temperatures of 400°C to 500°C.
Technical Paper

Engine and Aftertreatment Modeling for Gasoline Direct Injection

1998-10-19
982596
Engine and aftertreatment models have been developed in support of gasoline direct injection (GDI) engine development and aftertreatment system design. A brief overview of the engine models that were used to project emissions and fuel economy performance for the GDI engine is presented. Additionally, the construction and validation of a NOx trap aftertreatment model is described in considerable detail. The insights and increased understanding which have been gained regarding the trade-offs between engine out emission targets, aftertreatment performance, and emission constrained fuel economy benefits for direct injection gasoline engines are reviewed and discussed.
X