Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Experimental Study on the Interaction between Flow and Spark Plug Orientation on Ignition Energy and Duration for Different Electrode Designs

2017-03-28
2017-01-0672
The effect of flow direction towards the spark plug electrodes on ignition parameters is analyzed using an innovative spark aerodynamics fixture that enables adjustment of the spark plug gap orientation and plug axis tilt angle with respect to the incoming flow. The ignition was supplied by a long discharge high energy 110 mJ coil. The flow was supplied by compressed air and the spark was discharged into the flow at varying positions relative to the flow. The secondary ignition voltage and current were measured using a high speed (10MHz) data acquisition system, and the ignition-related metrics were calculated accordingly. Six different electrode designs were tested. These designs feature different positions of the electrode gap with respect to the flow and different shapes of the ground electrodes. The resulting ignition metrics were compared with respect to the spark plug ground strap orientation and plug axis tilt angle about the flow direction.
Technical Paper

Matching Ignition System Multi-Spark Calibration to the Burn-Rate of an Engine to Extend Ignitability Limits

1998-02-23
981046
“Multi-Spark” refers to the charging and discharging of an ignition coil multiple times during a single combustion event. This paper attempts to use multi-sparking to achieve an effect similar to a long duration spark to enhance combustion during slow burn conditions. Although multi-sparking is more typical of capacitive discharge (CDI) ignition systems, this paper discusses the multi-sparking of Kettering ignition systems to achieve the benefits of multi-sparking without CDIs' cost, packaging, complexity and reliability issues. The goal of the multi-spark calibration is to successfully initiate flame kernal development with the first spark discharge and add supplemental energy fast enough through restriking to prevent the flame kernal from quenching.
X