Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Introduction of the eGTU – An Electric Version of the Generic Truck Utility Aerodynamic Research Model

2024-04-09
2024-01-2273
Common aerodynamic research models have been used in aerodynamic research throughout the years to assist with the development and correlation of new testing and numerical techniques, in addition to being excellent tools for gathering fundamental knowledge about the physics around the vehicle. The generic truck utility (GTU) was introduced by Woodiga et al. [1] in 2020 following successful adoption of the DrivAer (Heft et al. [2]) by the automotive aerodynamics community with the goal to capture the unique flow fields created by pickups and large SUVs. To date, several studies have been presented on the GTU (Howard et. al 2021 [3], Gleason, Eugen 2022 [4]), however, with the increasing prevalence of electric vehicles (EVs), the authors have created additional GTU configurations to emulate an EV-style underbody for the GTU.
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
Technical Paper

Performance and Network Architecture Options of Consolidated Object Data Service for Multi-RAT Vehicular Communication

2023-04-11
2023-01-0857
With the proliferation of ADAS and autonomous systems, the quality and quantity of the data to be used by vehicles has become crucial. In-vehicle sensors are evolving, but their usability is limited to their field of view and detection distance. V2X communication systems solve these issues by creating a cooperative perception domain amongst road users and the infrastructure by communicating accurate, real-time information. In this paper, we propose a novel Consolidated Object Data Service (CODS) for multi-Radio Access Technology (RAT) V2X communication. This service collects information using BSM packets from the vehicular network and perception information from infrastructure-based sensors. The service then fuses the collected data, offering the communication participants with a consolidated, deduplicated, and accurate object database. Since fusing the objects is resource intensive, this service can save in-vehicle computation costs.
Journal Article

The Ford Rolling Road Wind Tunnel Facility

2023-04-11
2023-01-0654
The Ford Motor Company Rolling Road Wind Tunnel (RRWT) is a state-of-the-art aerodynamic wind tunnel test facility in Allen Park, Michigan. The RRWT has operated since January 2022 and is designed for passenger and motorsport vehicle development. The test facility includes an office area, three secure customer vehicle preparation bays, a garage area, a vehicle frontal area measurement system, and a full-scale ¾ open jet wind tunnel. The wind tunnel features an interchangeable single belt and 5-belt Moving Ground Plane (MGP) system with an integrated 6-component balance, a two-position nozzle, boundary layer removal systems, and two independent flow traverse systems. Each flow traverse has a large horizontal box beam and vertical Z-strut that can position the flow traverse accurately within the test volume.
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
Technical Paper

A Comparison of DES Methods for the DrivAer Generic Realistic Car Model on a Wall Resolved and a Wall Function Mesh

2022-03-29
2022-01-0900
The DrivAer realistic generic car model is now established as one of the benchmark geometries to assess the aerodynamic flow field characteristics associated with passenger vehicles. Since its introduction in 2012, the database of experimental studies has grown and provides excellent validation opportunities for analytical methods. This paper compares Computational Fluid Dynamics (CFD) simulations for integral forces, surface pressure distribution and velocity flow fields for the DrivAer model in the notchback configuration. Transient CFD data are obtained by employing hybrid Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation methods (Detached Eddy Simulation - DES) using the finite volume solvers Simcenter Star-CCM+ and the openFOAM based flow solver IconCFD. Computational results are calculated using Wall Resolved Meshes (WRM), where y+ < 1, and Wall Function Meshes (WFM), where 30 < y+ < 100.
Journal Article

Fast Air-Path Modeling for Stiff Components

2022-03-29
2022-01-0410
Development of propulsion control systems frequently involves large-scale transient simulations, e.g. Monte Carlo simulations or drive-cycle optimizations, which require fast dynamic plant models. Models of the air-path—for internal combustion engines or fuel cells—can exhibit stiff behavior, though, causing slow numerical simulations due to either using an implicit solver or sampling much faster than the bandwidth of interest to maintain stability. This paper proposes a method to reduce air-path model stiffness by adding an impedance in series with potentially stiff components, e.g. throttles, valves, compressors, and turbines, thereby allowing the use of a fast-explicit solver. An impedance, by electrical analogy, is a frequency-dependent resistance to flow, which is shaped to suppress the high-frequency dynamics causing air-path stiffness, while maintaining model accuracy in the bandwidth of interest.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Ford DrivAer Test Case Summary

2022-03-29
2022-01-0886
The 2nd Automotive CFD Prediction workshop (AutoCFD2) was organized to improve the state-of-the-art in automotive aerodynamic prediction. It is the mission of the workshop organizing committee to drive the development and validation of enhanced CFD methods by establishing publicly available standard test cases for which high quality on- and off-body wind tunnel test data is available. This paper reports on the AutoCFD2 workshop for the Ford DrivAer test case. Since its introduction, the DrivAer quickly became the quasi-standard for CFD method development and correlation. The Ford DrivAer has been chosen due to the proven, high-quality experimental data available, which includes integral aerodynamic forces, 209 surface pressures, 11 velocity profiles and 4 flow field planes. For the workshop, the notchback version of the DrivAer in a closed cooling, static floor test condition has been selected.
Technical Paper

Green Light Optimized Speed Advisory (GLOSA) with Traffic Preview

2022-03-29
2022-01-0152
By utilizing the vehicle to infrastructure communication, the conventional Green Light Optimized Speed Advisory (GLOSA) applications give speed advisory range for drivers to travel to pass at the green light. However, these systems do not consider the traffic between the ego vehicle and the traffic light location, resulting in inaccurate speed advisories. Therefore, the driver needs to intuitively adjust the vehicle's speed to pass at the green light and avoid traffic in these scenarios. Furthermore, inaccurate speed advisories may result in unnecessary acceleration and deceleration, resulting in poor fuel efficiency and comfort. To address these shortcomings of conventional GLOSA, in this study, we proposed the utilization of collaborative perception messages shared by smart infrastructures to create an enhanced speed advisory for the connected vehicle drivers and automated vehicles.
Journal Article

Numerical Modelling of Coolant Filling and De-aeration in a Battery Electric Vehicle Cooling System

2022-03-29
2022-01-0775
Trapped air bubbles inside coolant systems have adverse effect on the cooling performance. Hence, it is imperative to ensure an effective filling and de-aeration of the coolant system in order to have less air left before the operation of the coolant system. In the present work, a coolant/air multiphase VOF method was utilized using the commercial CFD software SimericsMP+® to study the coolant filling and subsequent de-aeration process in a Battery Electric Vehicle (BEV) cooling system. First, validations of the numerical simulations against experiments were performed for a simplified coolant recirculation system. This system uses a tequila bottle for de-aeration and the validations were performed for different coolant flow rates to examine the de-aeration efficiency. A similar trend of de-aeration was captured between simulation and experimental measurement.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Journal Article

Rear-End Impacts - Part 1: Field and Test Data Analysis of Crash Characteristics

2022-03-29
2022-01-0859
Prior to developing or modifying the protocol of a performance evaluation test, it is important to identify field relevant conditions. The objective of this study was to assess the distribution of selected crash variables from rear crash field collisions involving modern vehicles. The number of exposed and serious-to-fatally injured non-ejected occupants was determined in 2008+ model year (MY) vehicles using the NASS-CDS and CISS databases. Selected crash variables were assessed for rear crashes, including severity (delta V), impact location, struck vehicle type, and striking objects. In addition, 15 EDRs were collected from 2017 to 2019 CISS cases involving 2008+ MY light vehicles with a rear delta V ranging from 32 to 48 km/h. Ten rear crash tests were also investigated to identify pulse characteristics in rear crashes. The tests included five vehicle-to-vehicle crash tests and five FMVSS 301R barrier tests matching the struck vehicle.
Technical Paper

Model in the loop for training purpose

2022-02-04
2021-36-0014
The automotive industry is passing for a big transformation, due to technologies advance. The electrical technologies are also on a good rising curve, calling the attention of the Original Equipment Manufacturer (OEMs). This scenario generates the demand for a faster method to train their new hired engineers, when compared with usual on the job training. Model in the Loop (MiL) consists in one of the real-time embedded systems test phases, which is developed in a computational environment, performing a mathematical modeling of the system, presenting an interface that allows the visualization of its dynamics and the signals involved. Two powerful software in industry that apply MiL are the Matlab and Simulink. A project involving these applications was proposed for a team of new hired engineers, developing models of several vehicle Electronic Control Units (ECUs), with some scope reduction as an example the functional requirements reduction.
Technical Paper

Cast Magnesium Subframe Development-Corrosion Mitigation Strategy and Testing

2021-04-06
2021-01-0279
A cast magnesium AE44 subframe was designed and manufactured for a C Class sedan to reduce weight and improve vehicle fuel economy. Corrosion mitigation strategies were developed to reduce the likelihood of galvanic corrosion. Both a proving ground vehicle corrosion test and a laboratory component corrosion test were conducted. The vehicle test result demonstrated that the corrosion mitigation strategies were effective. They also provided lessons learned on clearance between magnesium and steel components and options to improve the subframe’s corrosion resistance. The magnesium subframe achieved 5 kg (32%) weight reduction from the equivalent steel subframe and met all the required structural performance targets.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

A Novel Methodology to Characterize the Thermal Behavior of Automotive Seats

2021-04-06
2021-01-0204
An automobile seat’s thermal performance can be challenging to quantify since it requires comprehensive human subject testing. Seat manufacturers must rely on subjective ratings to understand how the construction of a seat and its underlying heating and cooling technology may compare to other seats. Other factors may influence seat ratings published by global marketing information services companies (e.g., JD Power and Associates). In particular, occupants may be biased by the vehicle class in which a seat is installed and by how much the contribution of a specific vehicle’s HVAC system performance affects the perception of seat thermal comfort. Therefore, there is a need for an objective testing methodology that does not rely on human participants but is still capable of producing a thermal performance rating in terms of established thermal comfort scales.
Technical Paper

Coalesce of Artificial Intelligence into ADAS Hardware-In-the-Loop Testing

2021-04-06
2021-01-0193
Automotive industry is inclined towards connected, comfortable, environment friendly, efficient and smarter systems. Advanced Driver Assist System (ADAS) technology assist drivers to achieve a safer as well as better ride by automation and improvisation of the vehicular systems. With the advent of ADAS system, there is a significant focus not only in the development of Electronic Control Units (ECUs) and its features to cater to the emerging market but also on the information that could be displayed to meet the functional as well as safety requirements. This ADAS information display ensures timely notification to the driver with unique alerts that can be acoustic or visual. These systems should be tested thoroughly to ensure reliability as failures may impose severe risk on the OEM. Hardware in the loop testing has been largely adopted by industry against manual testing in lieu of the testing constraints imposed by the latter.
X