Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Driveline NVH Modeling Applying a Multi-subsystem Spectral-based Substructuring Approach

2005-05-16
2005-01-2300
A new multi-level substructuring approach is proposed to predict the NVH response of driveline systems for the purpose of analyzing rear axle gear whine concern. The fundamental approach is rooted in the spectral-based compliance coupling theory for combining the dynamics of two adjacent subsystems. This proposed scheme employs test-based frequency response functions of individual subsystems, including gear pairs, propshaft, control arms and axle tube, in free-free state as sequential building blocks to synthesize the complete system NVH response. Using an existing driveline design, the salient features of this substructuring approach is demonstrated. Specifically, the synthesized results for the pinion-propshaft assembly and complete vehicle system are presented. The predictions are seen to be in excellent agreement with the experimental data from direct vehicle measurements.
Technical Paper

Vehicle Cascade & Target Response Analysis (VeCTRA) is an Excel Based Tool Used for the Idle NVH Target Cascade Process

2003-05-05
2003-01-1434
Recent trends show a growing demand for improved powertrain noise and vibration quality. In particular, there is little customer acceptance of vibration and noise (“boom”) at engine idle speeds. CAE analysis is being used increasingly as an aid for reducing overall vehicle level responses. Traditionally, analytical idle response is evaluated for only one particular engine order at a time. An efficient Excel based tool called VeCTRA (Vehicle Cascade & Target Response Analysis) was developed to accurately assess the effects of multiple powertrain orders on the vehicle level idle response. VeCTRA is capable of predicting the overall vehicle level response (tactile and acoustic) as well as determining the contribution from each engine order and the specific component excitations within an order. VeCTRA is capable of using analytical or experimentally measured sensitivity and/or excitation data.
X