Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ensemble Empirical Mode Decomposition for Characterising Exhaust Nano-Scale Particle Emissions of a Turbocharged Gasoline Power Unit

2023-10-31
2023-01-1665
This paper presents a method for analysing the characteristics of nano-scale particles emitted from a 1.6 Litre, 4-stroke, gasoline direct injection (GDI) and turbocharged spark ignition engine fitted with a three-way catalytic converter. Ensemble Empirical Mode Decomposition (EEMD) is employed in this work to decompose the nano-scale particle size spectrums obtained using a differential mobility spectrometer (DMS) into Intrinsic Mode Functions (IMF). Fast Fourier Transform (FFT) is then applied to each IMF to compute its frequency content. The results show a strong correlation between the IMFs of specific particle ranges and the IMFs of the total particle count at various speed and load operating conditions. Hence, it is possible to characterise the influence of specific nano-scale particle ranges on the total particulate matter signal by analysing the frequency components of its IMFs using the EEMD-FFT method.
Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

Numerical Simulation of Ethanol-Based Fuels in an F1 Power Unit

2023-04-11
2023-01-0739
Formula (1) vehicles have transitioned from E5 to E10 fuel for the 2022 season to reduce carbon emissions and by 2026 the vehicles are required to use 100% sustainable fuels. The aim of this paper is to identify the operating envelope of the F1 power unit for E10-E100 fuel and the resulting emission levels for these fuel compositions using numerical simulations. To achieve this aim an F1 engine model has been developed in GT-Suite with reference to the FIA 2022 Technical Regulations. The combustion model has been validated using data obtained from literature relating to laminar and turbulent flame speed, friction and heat transfer characteristics within the combustion chamber. One of the main challenges of using ethanol-based fuels is the increased levels of formaldehyde in the tailpipe.
Technical Paper

Virtual Methods for Water Management in Automotive Structures

2023-04-11
2023-01-0933
The requirements of the automotive industry move along due to product competitiveness and this contributes to increase complexity in the requirements for evaluation. Simulation tools play a key role thanks to their versatility and multiple physical phenomena that can be represented. The axis of analysis for this paper is the problem of the interaction of airflow and water flow in the cowl/plenum/leaf screen components. Airflow is represented by HVAC system operating and water flow by the vehicle in torrential rain. Initially, one simulation is evaluated at a time, in one side, the airflow entering the HVAC system in which the amount of air entering is monitored and pressure drop, on the other, the water simulation on the vehicle, both using a Lagrangian CFD model (using with tools such as STAR CCM+® or Ansys Fluent®) Due to this, a CFD methodology was developed to evaluate the interaction of air and water flow.
Technical Paper

Feature Extraction from a Crankshaft Instantaneous Speed Signal of an Automotive Power Unit using Cepstrum Analysis

2023-04-11
2023-01-0214
Internal combustion (IC) engines are the most common power unit technology found in road vehicles. The process of combustion within IC engines is linked to the output torque and overall powertrain performance. This work presents a method of analysing the parameters of cylinder pressure and crankshaft instantaneous speed signals obtained from a turbocharged, 4-stroke, 4-cylinder, 1.6 Litre, spark ignition, gasoline direct injection engine at various speed and load operating conditions. Whereas cepstrum analysis is used in the present work to extract critical features characterising the combustion process. Cepstrum analysis showed that the location of maximum heat release can be directly obtained from the quefrency of the instantaneous crank speed. This paper presents a systematic scheme for applying cepstrum for obtaining combustion features from the instantaneous crank speed signal.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Frequency Coupling Analysis in Spark Ignition Engine Using Bispectral Method and Ensemble Empirical Mode Decomposition

2022-03-29
2022-01-0481
Internal combustion (IC) engines are the current dominant power source used in the automotive industry for hybrid vehicles. The combustion process of IC engines involves various parameters, which are linked to the overall performance of the driveline. Therefore, finding the frequency coupling between the manifold pressure, in-cylinder pressure and output crankshaft speed will provide an insight into the reasons for torque fluctuations and its effect on driveline performance. The present work introduces a methodology to analyze cylinder pressure, manifold pressure and instantaneous crank speed signals measured from a 4 cylinder, 1.6 Litre, Gasoline Direct Injection Engine at different speed conditions to identify the frequency coupling between these signals. This work uses Ensemble Empirical Mode Decomposition (EEMD) as a de-noising method and Bispectral analysis for examining the presence of a frequency coupling from the signals.
Journal Article

Laser-Based In-Exhaust Gas Sensor for On-Road Vehicles

2022-03-29
2022-01-0535
A novel laser-absorption gas sensing apparaOn-vehicle Testing at VERtus capable of measuring NO directly within vehicle exhaust was developed and tested. The sensor design was enabled by key advances in the construction of optical probes that are sufficiently compact for deployment in real-world exhaust systems and can survive the harsh, high-temperature, and strongly vibrating environment typical of exhaust streams. Prototype test campaigns were conducted at high-temperature flow facilities intended to simulate exhaust gas conditions and within the exhaust of vehicles mounted on a chassis dynamometer. Results from these tests demonstrated that the sensor prototype is fundamentally free of cross-interference with competing species in the exhaust stream, can achieve a 1 ppmv NO detection limit, and can be operated across the full range of thermodynamic conditions expected for typical vehicle exhausts.
Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Technical Paper

How Well Can mPEMS Measure Gas Phase Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0369
“Real world emissions” is an emerging area of focus in motor vehicle related air quality. These emissions are commonly recorded using portable emissions measurement systems (PEMS) designed for regulatory application, which are large, complex and costly. Miniature PEMS (mPEMS) is a developing technology that can significantly simplify on-board emissions measurement and potentially promote widespread use. Whereas full PEMS use analyzers to record NOx, CO, and HCs similar to those in emissions laboratories, mPEMS tend to use electrochemical sensors and compact optical detectors for their small size and low cost. The present work provides a comprehensive evaluation of this approach. It compares measurements of NOx, CO, CO2 and HC emissions from five commercial mPEMS to both laboratory and full regulatory PEMS analyzers. It further examines the use of vehicle on-board diagnostics data to calculate exhaust flow, as an alternative to on-vehicle exhaust flow measurement.
Journal Article

Fuel Tank Dynamic Strain Measurement Using Computer Vision Analysis

2020-04-14
2020-01-0924
Stress and strain measurement of high density polyethylene (HDPE) fuel tanks under dynamic loading is challenging. Motion tracking combined with computer vision was employed to evaluate the strain in an HDPE fuel tank being dynamically loaded with a crash pulse. Traditional testing methods such as strain gages are limited to the small strain elastic region and HDPE testing may exceed the range of the strain gage. In addition, strain gages are limited to a localized area and are not able to measure the deformation and strain across a discontinuity such as a pinch seam. Other methods such as shape tape may not have the response time needed for a dynamic event. Motion tracking data analysis was performed by tracking the motion of specified points on a fuel tank during a dynamic test. An HDPE fuel tank was mounted to a vehicle section and a sled test was performed using a Seattle sled to simulate a high deltaV crash. Multiple target markers were placed on the fuel tank.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Technical Paper

Water Avoidance Design Strategy for Capacitive Exterior Handles

2020-01-13
2019-36-0187
Nowadays, capacitive handles are increasing their use in high-end commercial vehicles. This particular handle applies a technology that permits to unlock and even lock the vehicle without a key. As benefit for current life, the customer has the possibility to access and close the vehicles more efficiently and faster, just possessing the key in the pocket or any close compartment that the user is carrying, for example, bag, purse, backpack. Even though, the design of capacitive exterior handle must follow several design strategies to avoid nonfunctional in rainy climate. Water could work as a blocker for the sensor signal captured, special design strategies that must be taken in order to minimize that the liquid could ingress the handle and even be retained on the region that sensor is located.
Technical Paper

THE EFFECT OF BIODIESEL ON THE ELECTRICAL PROPERTIES OF AUTOMOTIVE ELASTOMERIC COMPOUNDS

2020-01-13
2019-36-0327
The lack of electrical conductivity on materials, which are used in automotive fuel systems, can lead to electrostatic charges buildup in the components of such systems. This accumulation of energy can reach levels that exceed their capacity to withstand voltage surges, which considerably increases the risk of electrical discharges or sparks. Another important factor to consider is the conductivity of the commercially available fuels, such as biodiesel, which contributes to dissipate these charges to a proper grounding point in automobiles. From 2013, the diesel regulation in Brazil have changed and the levels of sulfur in the composition of diesel were reduced considerably, changing its natural characteristic of promoting electrostatic discharges, becoming more insulating.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Journal Article

Machine Learning Algorithm for the Prediction of Idle Combustion Uniformity

2019-06-05
2019-01-1551
Combustion stability is a key contributor to engine shake at idle speed and can impact the overall perception of vehicle quality. The sub-firing harmonics of the combustion torque are used as a metric to assess idle shake and are, typically, measured at different levels of engine break mean effective pressure (BMEP). Due to the nature of the combustion phenomena at idle, it is clear that predicting the cycle-to-cycle and cylinder-to-cylinder combustion pressure variations, required to assess the combustion uniformity, cannot be achieved with the state of the art simulation technology. Inspired by the advancement in the field of machine learning and artificial intelligence and by the availability of a large amount of measured combustion test data, this paper explores the performance of various machine learning algorithms in predicting the idle combustion uniformity.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Technical Paper

Regeneration Strategies for Gasoline Particulate Filters

2019-04-02
2019-01-0969
Gasoline particulate filters (GPFs) are extremely effective at reducing tailpipe emissions of particulate mass and particulate number. Especially in the European and Chinese markets, where a particulate number standard is legislated, we see gasoline particulate filters being deployed in production on gasoline direct injected engines. Due to the high temperature in gasoline exhaust, most applications are expected to be passively regenerating without the help of an active regeneration strategy. However, for the few cases where a customer drive cycle has consistently low speed over a long time frame, an active regeneration strategy may be required. This involves increasing the exhaust temperature at the GPF up to around 600 degC so that soot can be combusted. We compare two different ways of achieving these temperatures, namely spark retard and air fuel ratio modulation. The former generates heat in the engine, the latter generates heat in one or more catalysts in the exhaust system.
X