Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Cycle-Average Heavy-Duty Engine Test Procedure for Full Vehicle Certification - Numerical Algorithms for Interpreting Cycle-Average Fuel Maps

2016-09-27
2016-01-8018
In June of 2015, the Environmental Protection Agency and the National Highway Traffic Safety Administration issued a Notice of Proposed Rulemaking to further reduce greenhouse gas emissions and improve the fuel efficiency of medium- and heavy-duty vehicles. The agencies proposed that vehicle manufacturers would certify vehicles to the standards by using the agencies’ Greenhouse Gas Emission Model (GEM). The agencies also proposed a steady-state engine test procedure for generating GEM inputs to represent the vehicle’s engine performance. In the proposal the agencies also requested comment on an alternative engine test procedure, the details of which were published in two separate 2015 SAE Technical Papers [1, 2]. As an alternative to the proposed steady-state engine test procedure, these papers presented a cycle-average test procedure.
Technical Paper

Modeling and Validation of Power-Split and P2 Parallel Hybrid Electric Vehicles

2013-04-08
2013-01-1470
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a freely-distributed, MATLAB/Simulink-based desktop application. Version 1.0 of the ALPHA tool was applicable only to conventional, non-hybrid vehicles and was used to evaluate off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies for the 2017-2025 LD GHG rule. The next version of the ALPHA tool will extend its modeling capabilities to include power-split and P2 parallel hybrid electric vehicles and their battery pack energy storage systems. Future versions of ALPHA will incorporate plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) architectures.
Technical Paper

Testing of Catalytic Exhaust Emission Control Systems Under Simulated Locomotive Exhaust Conditions

2011-04-12
2011-01-1313
Exhaust emissions were evaluated for four different catalytic exhaust emission control systems. Each system utilized a diesel oxidation catalyst, a metal-substrate partial-flow diesel particulate filter, an iron-exchanged or copper-exchanged Y-zeolite catalyst for urea selective catalytic reduction, and an ammonia slip catalyst. A 5.9-liter diesel truck engine was modified to match the exhaust conditions of a four-stroke diesel locomotive engine meeting the current Tier 2 locomotive emissions standards. NOx emissions, CO₂ emissions and exhaust temperatures were matched to the eight locomotive "throttle notch" power settings while exhaust mass flow was maintained near a constant fraction of locomotive exhaust mass flow for each "throttle notch" position. Regulated and unregulated exhaust emissions were measured over a steady-state test cycle for each of the four systems at low hours and following accelerated thermal aging and accelerated oil ash accumulation.
X