Refine Your Search

Topic

Search Results

Technical Paper

Computational Fluid Dynamics Model Creation and Simulation for Class 8 Tractor-Trailers

2023-08-18
2023-01-5051
The Environmental Protection Agency (EPA), in partnership with Research Triangle Institute (RTI International) and Auto Research Center (ARC-Indy), have created digital geometries of commercially available heavy-duty tractor-trailers. The goal of this effort was to improve the agency’s understanding of aerodynamic modeling of modern trucks and to provide opportunities for more consistent engagement on computational fluid dynamics (CFD) analyses. Sleeper and day cab tractors with aerodynamic features and a 53-foot box trailer with aerodynamic technology options were scanned to create high-resolution geometries. The scanning process consisted of a combination of physical scanning with a handheld device, along with digital post-processing. The completed truck geometries are compatible with most commercial CFD software and are publicly available for modeling and analyses.
Technical Paper

Assessment of Changing Relationships between Vehicle Fuel Consumption and Acceleration Performance

2020-09-07
2020-01-5067
In light-duty vehicles, there is a fundamental trade-off between fuel consumption and acceleration performance, if other vehicle attributes are held fixed. Earlier econometric studies have estimated the magnitude of this trade-off - the elasticity of fuel consumption with respect to performance - based on historical vehicle data. The majority of these studies assume, a priori, that elasticity is constant across the model year, vehicle power, and technology content. However, there is evidence that the content in the underlying powertrain technology packages is shifting in a way that reduces the value of the elasticity of fuel consumption with respect to performance, such that historical trends would not predict future behavior. This paper presents an alternative strategy for studying vehicle fuel consumption versus performance trade-off.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Real-World Emission Modeling and Validations Using PEMS and GPS Vehicle Data

2019-04-02
2019-01-0757
Portable Emission Measurement Systems (PEMS) are used by the U.S. Environmental Protection Agency (EPA) to measure gaseous and particulate mass emissions from vehicles in normal, in-use, on-the-road operation to support many of its programs, including assessing mobile source emissions compliance, emissions factor assessment for in-use fleet modeling, and collection of in-use vehicle operational data to support vehicle simulation modeling programs. This paper discusses EPA’s use of Global Positioning System (GPS) measured altitude data and electronically logged vehicle speed data to provide real-world road grade data for use as an input into the Gamma Technologies GT-DRIVE+ vehicle model. The GPS measured altitudes and the CAN vehicle speed data were filtered and smoothed to calculate the road grades by using open-source Python code and associated packages.
Technical Paper

Characterization of GHG Reduction Technologies in the Existing Fleet

2018-04-03
2018-01-1268
By almost any definition, technology has penetrated the U.S. light-duty vehicle fleet significantly in conjunction with the increased stringency of fuel economy and GHG emissions regulations. The physical presence of advanced technology components provides one indication of the efforts taken to reduce emissions, but that alone does not provide a complete measure of the benefits of a particular technology application. Differences in the design of components, the materials used, the presence of other technologies, and the calibration of controls can impact the performance of technologies in any particular implementation. The effectiveness of a technology for reducing emissions will also be influenced by the extent to which the technologies are applied towards changes in vehicle operating characteristics such as improved acceleration, or customer features that may offset mass reduction from the use of lightweight materials.
Technical Paper

Modeling and Validation of 12V Lead-Acid Battery for Stop-Start Technology

2017-03-28
2017-01-1211
As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of stop-start technology for reducing CO2 emissions from light-duty vehicles. Stop-start technology is widespread in Europe due to high fuel prices and due to stringent EU CO2 emissions standards beginning in 2012. Stop-start has recently appeared as a standard equipment option on high-volume vehicles like the Chevrolet Malibu, Ford Fusion, Chrysler 200, Jeep Cherokee, and Ram 1500 truck. EPA has included stop-start technology in its assessment of CO2-reducing technologies available for compliance with the standards. Simulation and modeling of this technology requires a suitable model of the battery. The introduction of stop-start has stimulated development of 12-volt battery systems capable of providing the enhanced performance and cycle life durability that it requires.
Technical Paper

Particulate Emissions in GDI Vehicle Transients: An Examination of FTP, HWFET, and US06 Measurements

2016-04-05
2016-01-0992
With increasingly stringent light duty particulate emissions regulations, it is of great interest to better understand particulate matter formation. Helping to build the knowledge base for a thorough understanding of particulate matter formation will be an essential step in developing effective control strategies. It is especially important to do this in such a way as to emulate real driving behaviors, including cold starts and transients. To this end, this study examined particulate emissions during transient operation in a recent model year vehicle equipped with a GDI engine. Three of the major federal test cycles were selected as evaluation schemes: the FTP, the HWFET, and the US06. These cycles capture much of the driving behaviors likely to be observed in typical driving scenarios. Measurements included particle size distributions from a TSI EEPS fast-response particle spectrometer, as well as real-time soot emissions from an AVL MSS soot sensor.
Technical Paper

Modeling of a Conventional Mid-Size Car with CVT Using ALPHA and Comparable Powertrain Technologies

2016-04-05
2016-01-1141
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data.
Technical Paper

Modeling the Effects of Transmission Gear Count, Ratio Progression, and Final Drive Ratio on Fuel Economy and Performance Using ALPHA

2016-04-05
2016-01-1143
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data. This paper presents an analysis of the effects of varying the absolute and relative gear ratios of a given transmission on carbon emissions and performance.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Technical Paper

Effect of Current and SOC on Round-Trip Energy Efficiency of a Lithium-Iron Phosphate (LiFePO4) Battery Pack

2015-04-14
2015-01-1186
While equivalent circuit modeling is an effective way to model the performance of automotive Li-ion batteries, in some applications it is more convenient to refer to round-trip energy efficiency. Energy efficiency of either cells or full packs is seldom documented by manufacturers in enough detail to provide an accurate impression of this metric over a range of operating conditions. The energy efficiency of a full battery pack may also be subject to more variables than would be represented by extrapolating results obtained from a single cell, and can be more demanding to measure in an accurate and consistent manner. Roundtrip energy efficiency of a 22.8-kWh A123 Li-ion (Lithium Iron Phosphate, LiFePO4) battery pack was measured by applying a fixed quantity of charge and discharge current between 0.2C and 2C rates and at SOCs between 10% and 90% at an average temperature of 23°C.
Technical Paper

Downsized Boosted Engine Benchmarking and Results

2015-04-14
2015-01-1266
Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012-2025 are requiring vehicle powertrains to become much more efficient. One key technology strategy that vehicle manufacturers are using to help comply with GHG and FE standards is to replace naturally aspirated engines with smaller displacement “downsized” boosted engines. In order to understand and measure the effects of this technology, the Environmental Protection Agency (EPA) benchmarked a 2013 Ford Escape with an EcoBoost® 1.6L engine. This paper describes a “tethered” engine dyno benchmarking method used to develop a fuel efficiency map for the 1.6L EcoBoost® engine. The engine was mounted in a dyno test cell and tethered with a lengthened engine wire harness to a complete 2013 Ford Escape vehicle outside the test cell. This method allowed engine mapping with the stock ECU and calibrations.
Technical Paper

Influence of Fuel PM Index and Ethanol Content on Particulate Emissions from Light-Duty Gasoline Vehicles

2015-04-14
2015-01-1072
The EPAct/V2/E-89 gasoline fuel effects program collected emissions data for 27 test fuels using a fleet of 15 high-sales cars and light trucks from the 2008 model year (all with port fuel injection). The test fuel matrix covered values of T50, T90, vapor pressure, ethanol content, and total aromatic content spanning ranges typical of market gasolines. Emission measurements were made over the LA92 cycle at a nominal temperature of 24°C (75°F). The resulting emissions database of 956 tests includes a particulate matter (PM) mass measurement for each. Emission models for PM fuel effects were fit based on terms for which the fuel matrix was originally optimized, with results published by EPA in a 2013 analysis report. This paper presents results of a subsequent modeling analysis of this PM data using the PM Index fuel parameter, and compares these models to the original versions.
Technical Paper

Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA

2015-04-14
2015-01-1140
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model. As a result of the model refinements and in preparation for the mid-term evaluation of the 2017-2025 LD GHG rule, we are revalidating the model with newly acquired vehicle data. This paper presents the benchmarking, modeling and continued testing of a 2013 Chevy Malibu 1LS. During the initial benchmarking phase, the engine and transmission were removed from the vehicle and tested and evaluated on separate test stands.
Technical Paper

HIL Development and Validation of Lithium-Ion Battery Packs

2014-04-01
2014-01-1863
A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pack cooler, and a temperature controlled chamber. For e-machine testing and HEV power pack component testing, a variety of different battery packs are needed to power these devices to simulate in-vehicle conditions. For in-house e-machine testing and development, it is cost prohibitive to purchase a variety of battery packs, and also very time-consuming to interpret the battery management systems, CAN signals, and other interfaces for different vehicle manufacturers.
Journal Article

In-Situ Emissions Performance of EPA2010-Compliant On-Highway Heavy-Duty Diesel Engines

2013-09-24
2013-01-2430
Implementation of EPA's heavy-duty engine NOx standard of 0.20 g/bhp-hr has resulted in the introduction of a new generation of emission control systems for on-highway heavy-duty diesel engines. These new control systems are predominantly based around aftertreatment systems utilizing urea-based selective catalytic reduction (SCR) techniques, with only one manufacturer relying solely on in-cylinder NOx emission reduction techniques. As with any new technology, EPA is interested in evaluating whether these systems are delivering the expected emissions reductions under real-world conditions and where areas for improvement may lie. To accomplish these goals, an in-situ gaseous emissions measurement study was conducted using portable emissions measurement devices. The first stage of this study, and subject of this paper, focused on engines typically used in line-haul trucking applications (12-15L displacement).
Journal Article

Maneuver-Based Battery-in-the-Loop Testing - Bringing Reality to Lab

2013-04-08
2013-01-0157
The increasing numbers of hybrid electric and full electric vehicle models currently in the market or in the pipeline of automotive OEMs require creative testing mechanisms to drive down development costs and optimize the efficiency of these vehicles. In this paper, such a testing mechanism that has been successfully implemented at the US Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory (EPA NVFEL) is described. In this testing scheme, the units-under-test consist of a battery pack and its associated battery management system (BMS). The remaining subsystems, components, and environment of the vehicle are virtual and modeled in high fidelity.
Technical Paper

Modeling and Validation of Power-Split and P2 Parallel Hybrid Electric Vehicles

2013-04-08
2013-01-1470
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a freely-distributed, MATLAB/Simulink-based desktop application. Version 1.0 of the ALPHA tool was applicable only to conventional, non-hybrid vehicles and was used to evaluate off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies for the 2017-2025 LD GHG rule. The next version of the ALPHA tool will extend its modeling capabilities to include power-split and P2 parallel hybrid electric vehicles and their battery pack energy storage systems. Future versions of ALPHA will incorporate plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) architectures.
Technical Paper

Modeling and Validation of Lithium-Ion Automotive Battery Packs

2013-04-08
2013-01-1539
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a freely-distributed, MATLAB/Simulink-based desktop application. Version 1.0 of the ALPHA tool was applicable only to conventional, non-hybrid vehicles and was used to evaluate off-cycle technology such as air-conditioning, electrical load reduction technology and road load reduction technologies for the 2017-2025 LD GHG and Fuel Economy rule. The next version of the ALPHA tool extends its modeling capabilities to include power-split and P2 parallel hybrid electric vehicles and their battery pack energy storage systems. Future versions of ALPHA will incorporate plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) architectures.
Technical Paper

Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool

2013-04-08
2013-01-0808
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the greenhouse gas emissions and fuel efficiency of light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator that is capable of analyzing various vehicle types equipped with different powertrain technologies. The software is built on MATLAB/Simulink. This first version release of the simulation tool models conventional vehicles and is capable of evaluating effects of off-cycle technologies on greenhouse gas emissions, such as air conditioning, electrical load reduction, road load reduction by active aerodynamics, and engine start-stop. This paper introduces the simulation tool by describing its basic model architecture and presenting its underlying physics as well as model formulations. It describes the simulation capability along with its graphical user interface of the tool, designed for off-cycle technology analysis purposes.
X