Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Periodic Reverse Flow and Boiling Fluctuations in a Microchannel Evaporator of an R134a Mobile Air-Conditioning System

2013-04-08
2013-01-1500
This paper presents experimental study of periodic reverse flow and induced boiling fluctuations in a microchannel evaporator and their impacts on performance of R134a mobile A/C system. Simultaneous flow visualization and pressure measurements revealed that reverse flow due to confined bubble longitudinal expansion caused periodic oscillations of the evaporator inlet pressure and the pressure drop, and their oscillation magnitude and frequency increase with ambient air temperatures because of higher average refrigerant mass flux and heat flux. Three potential impacts of vapor reverse flow reversal on evaporator performance are identified: 1) mild liquid maldistribution; 2) increased the evaporator pressure drop; 3) reduced heat transfer coefficient. Finally, to mitigate vapor reverse flow impacts, revised flash gas bypass (FGBR) method is proposed: vent and bypass backflow vapor trapped in the inlet header.
Journal Article

Experimentally Validated Model of Refrigerant Distribution in a Parallel Microchannel Evaporator

2012-04-16
2012-01-0321
This paper develops a model for a parallel microchannel evaporator that incorporates quality variation at the tube inlets and variable mass flow rates among tubes. The flow distribution is based on the equal pressure drop along each flow path containing headers and tubes. The prediction of pressure drop, cooling capacity, and exit superheat strongly agree with 48 different experimental results obtained in four configurations using R134a. Predicted temperature profiles are very close to infrared images of actual evaporator surface. When compared to the uniform distribution model (that assumes uniform distribution of refrigerant mass flow rate and quality) results from the new model indicate superior prediction of cooling capacity, and exit superheat. Model results indicate maldistribution of refrigerant mass flow rate among the parallel tubes, caused primarily by pressure drop in the outlet header.
Technical Paper

Envelope Protection System for Iced Airfoils Using Flap Hinge Moment

2011-06-13
2011-38-0066
A stall prediction method based on unsteady hinge moment measurements was previously developed from experimental hinge moment measurements on a NACA 3415 airfoil model under a clean configuration and four iced configurations. The stall prediction algorithm was based on three separate detector functions. Additional hinge moment measurements have been obtained experimentally for a NACA 23012 airfoil model, using these same clean and iced configurations. Tests were also conducted with boundary-layer trips on the model upper and lower surfaces. The addition of simulated icing degraded the performance of the NACA 23012. Upon application of the hinge moment stall prediction method, two of the six configurations provided detector function outputs that were inconsistent with the other four configurations. Further investigation revealed differences in the hinge moment signal between contamination configurations due to the presence of different types and extents of primary stall mechanisms.
Journal Article

Experimental Investigation of Droplet Dynamics and Spray Atomization inside Thermostatic Expansion Valves

2011-04-12
2011-01-0129
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
Journal Article

Effect of Flash Gas Bypass on the Performance of R134a Mobile Air-Conditioning System with Microchannel Evaporator

2011-04-12
2011-01-0139
This paper demonstrates that the implementation of Flash Gas Bypass method can improve the performance of conventional direct expansion R134a mobile air-conditioning system with a microchannel evaporator. This method uses flash gas tank after expansion valve to separate and bypass flash refrigerant vapor around the evaporator, and feed the evaporator with only liquid refrigerant. Pressure drop is reduced and refrigerant distribution is significantly improved, resulting in higher evaporator effectiveness and evaporation pressure. Both lower pressure drop and lifted evaporation pressure allows the compressor to work with lower pressure ratio, saving required compressor work. An experimental comparison of the direct expansion system shows that Flash Gas Bypass method increases the cooling capacity and COP at the same time by up to 16% and 11%, respectively.
Journal Article

Evaluation of Transient Refrigerant Migration Modeling Approach on Automotive Air Conditioning Systems

2011-04-12
2011-01-0649
Automotive air conditioning systems are subject to constantly changing operation conditions and steady state simulations are not sufficient to describe the actual performance. The refrigerant mass migration during transient events such as clutch-cycling or start-up has a direct impact on the transient performance. It is therefore necessary to develop simulation tools which can accurately predict the migration of the refrigerant mass. To this end a dynamic model of an automotive air conditioning system is presented in this paper using a switched modeling framework. Model validation against experimental results demonstrates that the developed modeling approach is able to describe the transient behaviors of the system, and also predict the refrigerant mass migration among system components during compressor shut-down and start-up (stop-start) cycling operations.
Technical Paper

Integrated Simulation of Engine Performance and AFR Control of a Stoichiometric Compression Ignition (SCI) Engine

2011-04-12
2011-01-0698
This paper describes the advantage of the integrated simulation platform and presents the results of performance simulations and the feed-forward air-fuel ratio (AFR) controller design of a new concept stoichiometric compression ignition (SCI) engine based on this platform. In this integrated simulation environment, the SCI engine was modeled in GT-Power and a simplified production engine control module (ECM) is implemented in Simulink/Matlab for the performance simulation and AFR control. The integrated engine and controller model was used to investigate constant-speed load-acceptance (CSLA) performance. During performance simulation, searching for operating conditions is difficult but critical for performance analysis. Trial and error method would require a long time to do. Based on the integrated simulation, a proportional-integral (PI) controller was designed to find the accurate operating conditions.
Technical Paper

Spray and Atomization Characterization of a Micro-Variable Circular-Orifice (MVCO) Fuel Injector

2011-04-12
2011-01-0679
HCCI/PCCI combustion concepts have been demonstrated for both high brake thermal efficiency and low engine-out emissions. However, these advanced combustion concepts still could not be fully utilized partially due to the limitations of conventional fixed spray angle nozzle designs for issues related to wall wetting for early injections. The micro-variable circular orifice (MVCO) fuel injector provides variable spray angles, variable orifice areas, and variable spray patterns. The MVCO provides optimized spray patterns to minimize combustion chamber surface-wetting, oil dilution and emissions. Designed with a concise structure, MVCO can significantly extend the operation maps of high efficiency early HCCI/PCCI combustion, and enable optimization of a dual-mode HCCI/PCCI and Accelerated Diffusion Combustion (ADC) over full engine operating maps. The MVCO variable spray pattern characteristics are analyzed with high speed photographing.
Technical Paper

Emissions Characteristics of Neat Butanol Fuel Using a Port Fuel-Injected, Spark-Ignition Engine

2011-04-12
2011-01-0902
An experimental investigation was conducted using a Ford single-cylinder spark-ignition research engine to compare the performance and emissions of neat n-butanol fuel to that of gasoline and ethanol. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxide ere used to compare the three fuels in terms of combustion byproducts. It was found that gasoline and butanol are closest in engine performance with butanol producing slightly less brake torque. Exhaust gas temperature and nitrogen oxide measurements show that butanol combusts at a lower peak temperature. Of particular interest were the emissions of unburned hydrocarbons which were between two and three times those of gasoline suggesting that butanol is not atomizing as effectively as gasoline and ethanol.
Technical Paper

Reducing NOx Emissions from a Common-Rail Engine Fueled with Soybean Biodiesel

2011-04-12
2011-01-1195
Performance and emissions of a common-rail production diesel engine fueled with soybean-derived biodiesel was investigated. The work was broken down into two categories. First, adjustment of injection timing and EGR ratio was investigated as a means to reduce NOx emissions to levels comparable with those obtained when using pure diesel fuel. Next, simultaneous reduction of NOx and soot emissions was investigated using high rates of EGR combined with late injection timings to approach the low-temperature combustion regime. Results from the first part of the study indicate that optimization of engine control parameters for use with biodiesel can be beneficial to performance and emissions. It was found that adjusting the engine's MAF setpoint table to reflect the difference in stoichiometric air-fuel ratio between diesel and biodiesel brought NOx emissions to comparable or lower levels.
Technical Paper

A Study of Effects of Volatility on Butanol-Biodiesel-Diesel Spray and Combustion

2011-04-12
2011-01-1197
Ternary blends of butanol-biodiesel-diesel with different blending ratios were tested inside a constant volume chamber under various ambient temperatures so as to investigate the spray and combustion characteristics of the fuels. Applying the high speed imaging, a sudden drop in spray penetration was observed at ambient temperature of 800 K and 900 K for fuels with certain blending ratio, but not at 1000 K and 1200 K. When the spray penetration of the butanol-biodiesel-diesel blends was compared to that of the biodiesel-diesel blends under non-combusting environment, a sudden drop in spray penetration length was also observed at 1100 K. The results indicated that for the non-combusting case, the tip of the spray jet erupted into a plume sometime after injection for the butanol-biodiesel-diesel blend at an ambient temperature of 1100 K. Such phenomenon was not seen with the biodiesel-diesel blend, neither with the same fuel but at a lower ambient temperature of 900 K.
Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
Technical Paper

Effect of Ambient Temperature on Flame Lift-off and Soot Formation of Biodiesel Sprays

2010-04-12
2010-01-0606
Pure diesel and biodiesel were tested inside a constant-volume combustion chamber which simulates the in-cylinder conditions similar to a diesel engine and is more flexible to change the engine operation boundary conditions. The ambient temperature effect on flame lift-off length for both fuels was first investigated with fixed injection pressure, duration, ambient density, and ambient oxygen concentration. This was determined from time-averaged OH chemiluminescence imaging technique. Then, the impacts of the observed lift-off length variations on oxygen ratio upstream of the lift-off location and the soot formation process were also studied. A Forward Illumination Light Extinction (FILE) soot measurement technique was adopted to study the soot formation process. The FILE technique with the capability of two-dimensional time-resolved quantitative soot measurement provides the much-needed information to investigate the soot formation mechanism.
Technical Paper

Effects of Injection Pressure on Low-sooting Combustion in an Optical HSDI Diesel Engine Using a Narrow Angle Injector

2010-04-12
2010-01-0339
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine equipped with a Bosch common rail injection system was used to study effects of injection pressures on the in-cylinder spray and combustion processes. An injector with an injection angle of 70 degrees and European low sulfur diesel fuel (cetane number 54) were used in the work. The operating load was 2.0 bar IMEP with no EGR added in the intake. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern. Two-stage low temperature reaction was seen for early injection timings.
X