Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Engine Efficiency Measurements Using a 100 kHz Radio Frequency Corona Igniter

2023-08-28
2023-24-0041
Conventional spark-ignition engines are currently incapable of meeting rising customer performance demands while complying with even stringent pollutant-emissions regulations. As a result, innovative ignition systems are being developed to accomplish these targets. Radio-Frequency corona igniters stand out for their ability to accelerate early flame growth speed by exploiting the combined action of kinetic, thermal and transport effects. Furthermore, a volumetric discharge enables the promotion of combustion over a wide area, as opposed to the local ignition of traditional spark. The present work wants to evaluate the advantages of a Streamer-type Radio Frequency corona discharge at about 100 kHz with respect to those of traditional spark igniter.
Technical Paper

Lean Combustion Analysis of a Plasma-Assisted Ignition System in a Single Cylinder Engine fueled with E85

2022-09-16
2022-24-0034
Engine research community is developing innovative strategies capable of reducing fuel consumption and pollutant emissions while ensuring, at the same time, satisfactory performances. Spark ignition engines operation with highly diluted or lean mixture is demonstrated to be beneficial for engine efficiency and emissions while arduous for combustion initiation and stability. Traditional igniters are unsuitable for such working conditions, therefore, advanced ignition systems have been developed to improve combustion robustness. To overcome the inherent efficiency limit of combustion engines, the usage of renewable fuels is largely studied and employed to offer a carbon neutral transition to a cleaner future. For such a reason, both innovative ignition systems and bio or E-fuels are currently being investigated as alternatives to the previous approaches. Within this context, the present work proposes a synergetic approach which combines the benefits of a biofuel blend, i.e.
Technical Paper

Burner Development for Light-Off Speed-Up of Aftertreatment Systems in Gasoline SI engines

2022-06-14
2022-37-0033
Emission legislation for passenger cars is requiring a drastic reduction of exhaust pollutants from internal combustion engines (ICE). In this framework, achieving a quick heating-up of the catalyst is of paramount importance to cut down the cold start emissions and meet future regulation requirements. This paper describes the development and the basic characteristics of a novel burner for gasoline engines exhaust systems designed for being activated immediately at engine cold start. The burner is comprised of a fuel injector, an air system, and an ignition device. The design of the combustion chamber is first presented, with a description of the air-fuel interactions and mixture formation processes. Swirl is used along with a flame-holder concept to anchor the flame at the mixer exit. Spray-swirl and spray-walls interaction are also discussed. Computational Fluid Dynamics (CFD) analyses have been used to investigate these aspects.
Technical Paper

Numerical Simulation of the Early Flame Development Produced by a Barrier Discharge Igniter in an Optical Access Engine

2021-09-05
2021-24-0011
Currently, conventional spark-ignition engines are unfit to satisfy the growing customer requirements on efficiency while complying with the legislations on pollutant emissions. New ignition systems are being developed to extend the engine stable operating range towards increasing lean conditions. Among these, the Radio-Frequency corona igniters represent an interesting solution for the capability to promote the combustion in a much wider region than the one involved by the traditional spark channel. Moreover, the flame kernel development is enhanced by means of the production of non-thermal plasma, where low-temperature active radicals are ignition promoters. However, at low pressure and at high voltage the low temperature plasma benefits can be lost due to occurrences of spark-like events. Recently, RF barrier discharge igniters (BDI) have been investigated for the ability to prevent the arc formation thanks to a strong-breakdown resistance.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Luminosity and Thermal Energy Measurement and Comparison of a Dielectric Barrier Discharge in an Optical Pressure-Based Calorimeter at Engine Relevant Conditions

2021-04-06
2021-01-0427
The amount of the thermal energy released in a gas mixture is crucial to characterize the igniter capability to start a robust ignition in internal combustion engines, especially in challenging operating conditions as high EGR dilution or very lean mixture. Nevertheless, the thermal energy measurement can be performed only in controlled environments, such as constant volume vessels, while it is not feasible in metal engines. This work proposes to find a correlation between the released thermal energy and the luminosity generated by the same discharge event in an optical vessel. This correlation implies that energy information could be indirectly obtained through feasible optical measurements in optical engines, and even in metal engines via low-cost diagnostic tools such as borescopes. The experimental campaign is carried out with a non-equilibrium plasma igniter, a dielectric-barrier discharge igniter (BDI).
Technical Paper

Engine Knock Evaluation Using a Machine Learning Approach

2020-09-27
2020-24-0005
Artificial Intelligence is becoming very important and useful in several scientific fields. Machine learning methods, such as neural networks and decision trees, are often proposed in applications for internal combustion engines as virtual sensors, faults diagnosis systems and engine performance optimization. The high pressure of the intake air coupled with the demand of lean conditions, in order to reduce emissions, have often close relationship with the knock events. Fuels autoignition characteristics and flame front speed have a significant impact on knock phenomenon, producing high internal cylinder pressures and engine faults. The limitations in using pressure sensors in the racing field and the challenge to reduce the costs of commercial cars, push the replacement of a hardware redundancy with a software redundancy.
Technical Paper

Comparative Analysis between a Barrier Discharge Igniter and a Streamer-Type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions

2020-04-14
2020-01-0276
Among plasma-assisted ignition technologies, the Radio-Frequency (RF) corona family represents an interesting solution for the ability to extend the engine operating range. These systems generate transient, non-thermal plasma, which is able to enhance the combustion onset by means of thermal, kinetic and transport effects. Streamer-type RF corona discharge, at about 1 MHz, ignites the air-fuel mixture in multiple filaments, resulting in many different flame kernels. The main issue of this system is that at high electrode voltage and low combustion chamber pressure a transition between streamer and arc easily occurs: in this case transient plasma benefits are lost. A barrier discharge igniter (BDI), supplied with the same RF energy input, instead, is more breakdown-resistant, so that voltage can be raised to higher levels. In this work, a streamer-type RF corona igniter and a BDI were tested in a single-cylinder optical engine fueled with gasoline.
Journal Article

An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities

2020-04-14
2020-01-0832
Spray modeling techniques have evolved from the classic DDM (Discrete Drops Method) approach, where the continuous liquid jet is discretized into “drops” or “parcels” till advanced spray models often based on Eulerian approaches. The former technique, although computationally efficient, is essentially inadequate in highly dense jets, as in the near nozzle region of compression ignition engines, while the latter could lead to extreme levels of computational effort when resolved interface capturing methods, such as VoF (Volume of Fluids) and LS (Level-Set) types, are used. However, in a typical engineering calculation, the mesh resolution is considerably coarser than in these high fidelity computations. If one presumes that these interfacial details are far smaller than the mesh size, smoothing features over at least one cell ultimately results in a diffuse-interface treatment in a Eulerian framework.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

2019-09-09
2019-24-0008
Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
Journal Article

Influence of Turbulence and Thermophysical Fluid Properties on Cavitation Erosion Predictions in Channel Flow Geometries

2019-04-02
2019-01-0290
Cavitation and cavitation-induced erosion have been observed in fuel injectors in regions of high acceleration and low pressure. Although these phenomena can have a large influence on the performance and lifetime of injector hardware, questions still remain on how these physics should be accurately and efficiently represented within a computational fluid dynamics model. While several studies have focused on the validation of cavitation predictions within canonical and realistic injector geometries, it is not well documented what influence the numerical and physical parameters selected to represent turbulence and phase change will have on the predictions for cavitation erosion propensity and severity. In this work, a range of numerical and physical parameters are evaluated within the mixture modeling approach in CONVERGE to understand their influence on predictions of cavitation, condensation and erosion.
Book

Prototype Powertrain in Motorsport Endurance Racing

2018-08-01
Racing continues to be the singular, preeminent source of powertrain development for automakers worldwide. Engineering teams rely on motorsports for the latest prototype testing and research. Endurance racing provides the harshest and most illuminating stage for system design validation of any motorsport competition. While advancements throughout the 20th Century brought about dramatic increases in engine power output, the latest developments from endurance racing may be more impactful for fuel efficiency improvements. Hybrid powertrains are a critical area of research for automakers and are being tested on the toughest of scales. Prototype Powertrain in Motorsport Endurance Racing brings together ten vital SAE technical papers and SAE Automotive Engineering magazine articles surrounding the advancements of hybrid powertrains in motorsports.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Combustion Behavior of an RF Corona Ignition System with Different Control Strategies

2018-04-03
2018-01-1132
It has been proved that Radio Frequency Corona, among other innovative ignition systems, is able to stabilize combustion and to extend the engine operating range in lean conditions, with respect to conventional spark igniters. This paper reports on a sensitivity analysis on the combustion behavior for different values of Corona electric control parameters (supply voltage and discharge duration). Combustion analysis has been carried out on a single cylinder PFI gasoline-fueled optical engine, by means of both indicating measurements and imaging. A high-speed camera has been used to record the natural luminosity of premixed flames and the obtained images have been synchronized with corresponding indicating acquisition data. Imaging tools allowed to observe and measure the early flame development, providing information which are not obtainable by a pressure-based indicating system.
Technical Paper

Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations

2017-09-04
2017-24-0034
Water injection in highly boosted gasoline direct injection (GDI) engines has become an attractive area over the last few years as a way of increasing efficiency, enhancing performance and reducing emissions. The technology and its effects are not new, but current gasoline engine trends for passenger vehicles have several motivations for adopting this technology today. Water injection enables higher compression ratios, optimal spark timing and elimination of fuel enrichment at high load, and possibly replacement of EGR. Physically, water reduces charge temperature by evaporation, dilutes combustion, and varies the specific heat ratio of the working fluid, with complex effects. Several of these mutually intertwined aspects are investigated in this paper through computational fluid dynamics (CFD) simulations, focusing on a turbo-charged GDI engine with port water injection (PWI). Different strategies for water injection timing, pressure and spray targeting are investigated.
Technical Paper

Injection Rate Measurement of GDI Systems Operating against Sub-Atmospheric and Pressurized Downstream Conditions

2017-09-04
2017-24-0110
In order to optimize gasoline direct injection combustion systems, a very accurate control of the fuel flow rate from the injector must be attained, along with appropriate spray characteristics in terms of drop sizing and jets global penetration/diffusion in the combustion chamber. Injection rate measurement is therefore one of the crucial tasks to be accomplished in order both to develop direct injection systems and to properly match them with a given combustion system. Noticeably, the hydraulic characteristics of GDI injectors should be determined according to a non-intrusive measuring approach. Unfortunately, the operation of all conventional injection analyzers requires the injection in a volume filled with liquid and the application of a significant counter-pressure downstream of the injector. This feature prevents any operation with low pressure injection systems such as PFIs.
Technical Paper

The Future of the Internal Combustion Engine After “Diesel-Gate”

2017-07-10
2017-28-1933
The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
X