Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
Technical Paper

Experimental and Numerical Insights on Battery Venting during Thermal Runaway

2023-04-11
2023-01-0502
Lithium-ion batteries have a well-documented failure tendency under abuse conditions with a significant release of gases and heat. This failure originated from the decomposition reactions within the battery’s electrochemical components, resulting in gas generation and increased internal pressure. To optimize battery safety, it is crucial to understand their behaviors when subjected to abuse conditions. The 18650 format cell incorporates a vent mechanism within a crimped cap to relieve pressure and mitigate the risk of rupture. However, cell venting introduces additional safety concerns associated with flammable gases and liquid electrolyte that flow into the environment. Experiments were performed with two venting caps with well-known geometries to quantify key parameters in describing the external dynamic flow of battery venting and to validate a CFD model.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Engine Combustion Hardware Diagnostics in an End-of-Line Cold Test Stand

2022-03-29
2022-01-0270
Internal combustion engines must be individually tested at the end of the manufacturing process. In recent years classical hot test stands, where the engine is run for several minutes, are being replaced by cold test alternatives. The latter allow fast testing cycles using an external motoring device without using any fuel. The absence of fuel and combustion lowers the health and safety requirements for the plant itself and subsequent engine transport, but this comes at the cost of additional difficulties for the verification of the correct assembly and operation of the combustion system hardware. This paper presents a cold test concept, which includes dedicated measurements and algorithms for the detection of common failures in the manufacturing process, including those of the combustion hardware.
Technical Paper

Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021-09-05
2021-24-0038
The reduction of carbon footprint of compression ignition engines for road transport makes it necessary to search for clean fuels alternative to diesel and to evaluate them under engine conditions. For this reason, in this paper, the combustion behaviour of different blends of synthetic fuels has been analyzed in an optical single cylinder engine of Medium Duty size (0,8 liters per cylinder) by means of optical techniques. The aim is to evaluate the effect of synthetic fuels, both partly or completely fossil diesel, in terms of combustion behaviours and soot formation. Therefore, different blends of oxymethylene dimethyl ether (OMEX) with diesel and neat hydrotreated vegetable oil (HVO) were studied. A conventional common rail injection system and a single injection strategy was used. In addition, special care was taken to ensure that conditions inside the engine cylinder at the injection start were as close as possible to the conditions used in previous studies.
Technical Paper

Experimental and Numerical Investigation of a Lean SI Engine To Be Operated as Range Extender for Hybrid Powertrains

2021-09-05
2021-24-0005
In the last few years, concern about the environmental impact of vehicles has increased, considering the growth of the dangerous effects on health of noxious exhaust emissions. For this reason, car manufacturers are moving towards more efficient combustion systems for Spark Ignition (SI) engines, aiming to comply with the increasingly stringent regulation imposed by EU and other legislators. Engine operation with very lean air/fuel ratios has demonstrated to be a viable solution to this problem. Stable ultra-lean combustion can be obtained with a Pre-Chamber (PC) ignition system, installed in place of the conventional spark plug. The efficiency of this configuration in terms of performance and emissions is due to its combustion process, that starts in the PC and propagates in the main chamber in the form of multiple hot turbulent jets.
Technical Paper

Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines

2021-04-06
2021-01-0413
In recent years, the automotive industry has been increasingly committed to developing new solutions for better and more efficient engines. One of them is the use of new insulating materials (thermal conductivity < 0.4 W/m-K, heat capacitance < 500 kJ/m3-K) to coat the engine combustion chamber walls, as well as the exhaust manifold. The main idea when coating the combustion chamber with these materials is to obtain a reduction of the temperature difference (thermal swing) between gas and walls during the engine cycle and minimize heat losses. Experimental measurements of the possible performance improvements are very difficult to obtain, mainly because the techniques available to measure wall temperature are limited. Therefore, simulations are typically used to investigate insulated combustion chambers. Nevertheless, the new generation of insulating coatings is posing challenges to numerical modelling, as layer thickness is very small (~100 μm).
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Effects of Ultra-High Injection Pressures up to 100 MPa on Gasoline Spray Morphology

2020-04-14
2020-01-0320
Very high pressures for injecting gasoline in internal combustion (i.c.) engines are recently explored for improving the air/fuel mixing process in order to control unburned hydrocarbons (UBHC) and particulate matter emissions such as for investigating new combustion concepts. The challenge remains the improvement of the spray parameters in terms of atomization, smaller droplets and their spread in the combustion chamber in order to enhance the combustion efficiency. In this framework, the raise of the injection pressure plays a key role in GDI engines for the trade-off of CO2 vs other pollutant emissions. This study aims contributing to the knowledge of the physical phenomena and mechanisms occurring when fuel is injected at ultra-high pressures for mapping and controlling the mixture formation.
Technical Paper

Assessment of the Ignition System Requirement on Diluted Mixture Spark Engines

2020-04-14
2020-01-1116
In order to face the new challenges, spark ignition engines are evolving by following some strategies and technologies. Among them, alternative combustion processes based on the dilution of the homogeneous mixture, either with fresh air or with Exhaust Gas Recirculation (EGR), are being explored. In a higher or lower extent, these changes modify in-cylinder thermodynamic conditions during the engine operation (pressure, temperature and gas composition) thus conditioning the spark ignition system requirements that will have to evolve to become more reliable and powerful. In this framework, an experimental study on the effect of the key in-cylinder conditions on the ignition system performance has been carried out in a single-cylinder spark-ignition (SI) research engine. The study includes EGR, lambda and energizing time sweeps to assess the behavior of the engine in different operating conditions.
Journal Article

Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine

2020-04-14
2020-01-0557
Compression ignition engines are widely used for transport and energy generation due to their high efficiency and low fuel consumption. To minimize the environmental impact of this technology, the pollutant emissions levels at the exhaust are strictly regulated. To reduce the after-treatment needs, alternative strategies as the low temperature combustion (LTC) concepts are being investigated recently. The reactivity controlled compression ignition (RCCI) uses two fuels (direct- and port- injected) with different reactivity to control the in-cylinder mixture reactivity by adjusting the proportion of both fuels. In spite of the proportion of the port-injected fuel is typically higher than the direct-injected one, the characteristics of the latter play a main role on the combustion process. Use of gasoline for direct injection is attractive to retard the start of combustion and to improve the air-fuel mixing process.
Technical Paper

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

2019-10-07
2019-24-0233
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed. In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered.
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine to Set-Up a 1d Model of Heat Transfer in Transient Conditions

2019-09-09
2019-24-0182
The analysis of heat losses in internal combustion engines (ICEs) is fundamental to evaluate and to improve engine efficiency. Detailed and reliable heat transfer models are required for more complex 1d-3d combustion models. At the same time, the thermal status of engine components, like pistons, is needed for an efficient design. Measurements of piston temperature during ICEs operation represent an important and challenging result to get for the aforementioned purposes. In the present work, temperature measurements collected at different engine speeds and loads, both in motored and fired modes, have been performed and used to set-up a theoretical correlation and 1d model of heat transfer through the optical window of the piston. The in-cylinder gas and external ambient temperature, together with the thermodynamic and material properties are given. The model has been first calibrated in some selected operating conditions and then validated in the remaining.
X